1
|
Zhong J, Huang W, Zhou H. Multifunctionality in Nature: Structure-Function Relationships in Biological Materials. Biomimetics (Basel) 2023; 8:284. [PMID: 37504172 PMCID: PMC10807375 DOI: 10.3390/biomimetics8030284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Modern material design aims to achieve multifunctionality through integrating structures in a diverse range, resulting in simple materials with embedded functions. Biological materials and organisms are typical examples of this concept, where complex functionalities are achieved through a limited material base. This review highlights the multiscale structural and functional integration of representative natural organisms and materials, as well as biomimetic examples. The impact, wear, and crush resistance properties exhibited by mantis shrimp and ironclad beetle during predation or resistance offer valuable inspiration for the development of structural materials in the aerospace field. Investigating cyanobacteria that thrive in extreme environments can contribute to developing living materials that can serve in places like Mars. The exploration of shape memory and the self-repairing properties of spider silk and mussels, as well as the investigation of sensing-actuating and sensing-camouflage mechanisms in Banksias, chameleons, and moths, holds significant potential for the optimization of soft robot designs. Furthermore, a deeper understanding of mussel and gecko adhesion mechanisms can have a profound impact on medical fields, including tissue engineering and drug delivery. In conclusion, the integration of structure and function is crucial for driving innovations and breakthroughs in modern engineering materials and their applications. The gaps between current biomimetic designs and natural organisms are also discussed.
Collapse
Affiliation(s)
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.Z.); (H.Z.)
| | | |
Collapse
|
2
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Li J, Li S, Huang J, Khan AQ, An B, Zhou X, Liu Z, Zhu M. Spider Silk-Inspired Artificial Fibers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103965. [PMID: 34927397 PMCID: PMC8844500 DOI: 10.1002/advs.202103965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Indexed: 05/14/2023]
Abstract
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Collapse
Affiliation(s)
- Jiatian Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Sitong Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Jiayi Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Abdul Qadeer Khan
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
| | - Baigang An
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Xiang Zhou
- Department of ScienceChina Pharmaceutical UniversityNanjing211198China
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and College of ChemistryKey Laboratory of Functional Polymer MaterialsFrontiers Science Center for New Organic MatterNankai UniversityTianjin300071China
- School of Chemical EngineeringUniversity of Science and Technology LiaoningAnshan114051China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
4
|
Yue H, Zeng Q, Huang J, Guo Z, Liu W. Fog collection behavior of bionic surface and large fog collector: A review. Adv Colloid Interface Sci 2022; 300:102583. [PMID: 34954474 DOI: 10.1016/j.cis.2021.102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Water shortages are currently becoming more and more serious due to complicated factors such as the development of the economy, environmental pollution, and climate deterioration. And it is the best solution to the problems faced by people in today's world to investigate the bionic structure of nature and explore effective methods for fog collection. Herein, we've illustrated the bionic structures of the Namib desert beetle, cactus spines, and spider silk, and we imitate and further modify the respective bionic structures, as well as construct multifunctional bionic structures to improve fog collection. In addition, we also expound the fog collection behavior of a large fog collector, and an excellent fog capture effect was achieved through studying the mesh structure, the surface modification of the mesh, and the construction of the fog collector. The advantages and limitations of fog collection by a harp fog collector were also explored. We hope that through this review, relevant researchers can have a deeper understanding of this field and thus promote the development of fog collection.
Collapse
Affiliation(s)
- Hao Yue
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Qinghong Zeng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Jang D, Thompson CB, Chatterjee S, Korley LT. Engineering bio-inspired peptide-polyurea hybrids with thermo-responsive shape memory behaviour. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2021; 6:1003-1015. [PMID: 35096418 PMCID: PMC8797660 DOI: 10.1039/d1me00043h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inspired by Nature's tunability driven by the modulation of structural organization, we utilize peptide motifs as an approach to tailor not only hierarchical structure, but also thermo-responsive shape memory properties of conventional polymeric materials. Specifically, poly(β-benzyl-L-aspartate)-b-poly(dimethylsiloxane)-b-poly(β-benzyl-L-aspartate) was incorporated as the soft segment in peptide-polyurea hybrids to manipulate hierarchical ordering through peptide secondary structure and a balance of inter- and intra-molecular hydrogen bonding. Employing these bioinspired peptidic polyureas, we investigated the influence of secondary structure on microphase-separated morphology, and shape fixity and recovery via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), small-angle X-ray scattering (SAXS) and dynamic mechanical analysis (DMA). The β-sheet motifs promoted phase mixing through extensive inter-molecular hydrogen bonding between the hard block and peptide segments and provided an increased chain elasticity, resulting in decreased shape fixity compared to a non-peptidic control. In contrast, intra-molecular hydrogen bonding driven by the α-helical arrangements yielded a microphase-separated and hierarchically ordered morphology, leading to an increase in the shape fixing ratio. These results indicate that peptide secondary structure provides a convenient handle for tuning shape memory properties by regulating hydrogen bonding with the surrounding polyurea hard segment, wherein extent of hydrogen bonding and phase mixing between the peptidic block and hard segment dictate the resulting shape memory behaviour. Furthermore, the ability to shift secondary structure as a function of temperature was also demonstrated as a pathway to influence shape memory response. This research highlights that peptide secondary conformation influences the hierarchical ordering and modulates the shape memory response of peptide-polymer hybrids. We anticipate that these findings will enable the design of smart bio-inspired materials with responsive and tailored function via a balance of hydrogen bonding character, structural organization, and mechanics.
Collapse
Affiliation(s)
- Daseul Jang
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
| | - Chase B. Thompson
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
| | - Sourav Chatterjee
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
| | - LaShanda T.J. Korley
- Department of Materials Science and Engineering, University of Delaware, 127 The Green, 201 Dupont Hall, Newark, DE. USA. 19716
- Department of Chemical and Biomolecular Engineering, University of Delaware, 151 Academy St. Newark, DE, 19716
| |
Collapse
|
6
|
Shape Memory Materials from Rubbers. MATERIALS 2021; 14:ma14237216. [PMID: 34885377 PMCID: PMC8658094 DOI: 10.3390/ma14237216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023]
Abstract
Smart materials are much discussed in the current research scenario. The shape memory effect is one of the most fascinating occurrences in smart materials, both in terms of the phenomenon and its applications. Many metal alloys and polymers exhibit the shape memory effect (SME). Shape memory properties of elastomers, such as rubbers, polyurethanes, and other elastomers, are discussed in depth in this paper. The theory, factors impacting, and key uses of SME elastomers are all covered in this article. SME has been observed in a variety of elastomers and composites. Shape fixity and recovery rate are normally analysed through thermomechanical cycle studies to understand the effectiveness of SMEs. Polymer properties such as chain length, and the inclusion of fillers, such as clays, nanoparticles, and second phase polymers, will have a direct influence on the shape memory effect. The article discusses these aspects in a simple and concise manner.
Collapse
|
7
|
Sarkar A, Edson C, Tian D, Fink TD, Cianciotti K, Gross RA, Bae C, Zha RH. Rapid Synthesis of Silk-Like Polymers Facilitated by Microwave Irradiation and Click Chemistry. Biomacromolecules 2020; 22:95-105. [PMID: 32902261 DOI: 10.1021/acs.biomac.0c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk is a natural fiber that surpasses most man-made polymers in its combination of strength and toughness. Silk fibroin, the primary protein component of silk, can be synthetically mimicked by a linear copolymer with alternating rigid and soft segments. Strategies for chemical synthesis of such silk-like polymers have persistently resulted in poor sequence control, long reaction times, and low molecular weights. Here, we present a two-stage approach for rapidly synthesizing silk-like polymers with precisely defined rigid blocks. This approach utilizes solid-phase peptide synthesis to create uniform oligoalanine "prepolymers", followed by microwave-assisted step-growth polymerization with bifunctional poly(ethylene glycol). Multiple coupling chemistries and reaction conditions were explored, with microwave-assisted click chemistry yielding polymers with Mw ∼ 14 kg/mol in less than 20 min. These polymers formed antiparallel β-sheets and nanofibers, which is consistent with the structure of natural silk fibroin. Thus, our strategy demonstrates a promising modular approach for synthesizing silk-like polymers.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Cody Edson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ding Tian
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tanner D Fink
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Katherine Cianciotti
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chulsung Bae
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
8
|
Sarkar A, Connor AJ, Koffas M, Zha RH. Chemical Synthesis of Silk-Mimetic Polymers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4086. [PMID: 31817786 PMCID: PMC6947416 DOI: 10.3390/ma12244086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Silk is a naturally occurring high-performance material that can surpass man-made polymers in toughness and strength. The remarkable mechanical properties of silk result from the primary sequence of silk fibroin, which bears semblance to a linear segmented copolymer with alternating rigid ("crystalline") and flexible ("amorphous") blocks. Silk-mimetic polymers are therefore of great emerging interest, as they can potentially exhibit the advantageous features of natural silk while possessing synthetic flexibility as well as non-natural compositions. This review describes the relationships between primary sequence and material properties in natural silk fibroin and furthermore discusses chemical approaches towards the synthesis of silk-mimetic polymers. In particular, step-growth polymerization, controlled radical polymerization, and copolymerization with naturally derived silk fibroin are presented as strategies for synthesizing silk-mimetic polymers with varying molecular weights and degrees of sequence control. Strategies for improving macromolecular solubility during polymerization are also highlighted. Lastly, the relationships between synthetic approach, supramolecular structure, and bulk material properties are explored in this review, with the aim of providing an informative perspective on the challenges facing chemical synthesis of silk-mimetic polymers with desirable properties.
Collapse
Affiliation(s)
| | | | | | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (A.S.); (A.J.C.); (M.K.)
| |
Collapse
|
9
|
Wei W, Zhu M, Wu S, Shen X, Li S. Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in Self-Controlled Catalysis. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Chen J, Hu J, Leung AKL, Chen C, Zhang J, Zhang Y, Zhu Y, Han J. Shape Memory Ankle-Foot Orthoses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32935-32941. [PMID: 30221507 DOI: 10.1021/acsami.8b08851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrically actuated ankle-foot orthoses (AFOs) were designed and prototyped using shape memory textile composites. Acrylic copolymers were synthesized as the matrix to demonstrate shape memory effects, whereas electrothermal fabrics were embedded to generate uniform heat as a trigger. Superior to conventional polymeric orthoses, shape memory AFOs (SM-AFOs) could be repeatedly programmed at least 20 times with stable shape fixity and recovery. Evidenced by clinical practice, SM-AFOs were effectively actuated at 10 V, allowing the correction of ankle angles with 10° plantarflexion. Ultimately, we envision a smart orthopedic system that can advance progressive rehabilitation with manipulation under safe and convenient conditions.
Collapse
|
11
|
Chen J, Hu J, Zuo P, Shi J, Yang M. Facile preparation of recombinant spider eggcase silk spheres via an HFIP-on-Oil approach. Int J Biol Macromol 2018; 116:1146-1152. [DOI: 10.1016/j.ijbiomac.2018.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
|
12
|
Gu L, Jiang Y, Hu J. Facile Preparation of Highly Stretchable and Recovery Peptide-Polyurethane/Ureas. Polymers (Basel) 2018; 10:E637. [PMID: 30966671 PMCID: PMC6403790 DOI: 10.3390/polym10060637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022] Open
Abstract
In this work, a new class of highly stretchable peptide-polyurethane/ureas (PUUs) were synthesized containing short β-sheet forming peptide blocks of poly(γ-benzyl-l-glutamate)-b-poly(propylene glycol)-b-poly(γ-benzyl-l-glutamate) (PBLG-b-PPG-b-PBLG), isophorone diisocyanate as the hard segment, and polytetramethylene ether glycol as the soft phase. PBLG-b-PPG-b-PBLG with short peptide segment length (<10 residues) was synthesized by amine-initiated ring opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydrides (BLG-NCA), which shows mixed α-helix and β-sheet conformation, where the percent of β-sheet structure was above 48%. Morphological studies indicate that the obtained PUUs show β-sheet crystal and nanofibrous structure. Mechanical tests reveal the PUUs display medium tensile strength (0.25⁻4.6 MPa), high stretchability (>1600%), human-tissue-compatible Young's modulus (226⁻513 KPa). Furthermore, the shape recovery ratio could reach above 85% during successive cycles at high strain (500%). In this study, we report a facile synthetic method to obtain highly stretchable and recovery peptide-polyurethane/urea materials, which will have various potential applications such as wearable and implantable electronics, and biomedical devices.
Collapse
Affiliation(s)
- Lin Gu
- Key Laboratory of Marine Materials and Related Technologies, Key Laboratory of Marine Materials and Protective Technologies of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Yuanzhang Jiang
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Jinlian Hu
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| |
Collapse
|
13
|
Wang R, Zhang F, Lin W, Liu W, Li J, Luo F, Wang Y, Tan H. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender. Macromol Biosci 2018; 18:e1800054. [DOI: 10.1002/mabi.201800054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/02/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Rong Wang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Fanjun Zhang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Weiwei Lin
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Wenkai Liu
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Jiehua Li
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Feng Luo
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Yaning Wang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610065 China
| | - Hong Tan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
14
|
Synthesis and Properties of Shape Memory Poly(γ-Benzyl-l-Glutamate)-b-Poly(Propylene Glycol)-b-Poly(γ-Benzyl-l-Glutamate). APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7121258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Montero de Espinosa L, Meesorn W, Moatsou D, Weder C. Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chem Rev 2017; 117:12851-12892. [DOI: 10.1021/acs.chemrev.7b00168] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Worarin Meesorn
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dafni Moatsou
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
16
|
Xiao X, Hu J, Gui X, Qian K. Shape Memory Investigation of α-Keratin Fibers as Multi-Coupled Stimuli of Responsive Smart Materials. Polymers (Basel) 2017; 9:E87. [PMID: 30970768 PMCID: PMC6432327 DOI: 10.3390/polym9030087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/28/2017] [Indexed: 11/29/2022] Open
Abstract
Like the water responsive shape memory (SM) effect of β-keratin bird feathers, α-keratin hairs either existing broadly in nature are found responsive to many types of coupled stimuli in SM behaviors. In this article, α-keratin hairs were investigated for the combined stimuli of thermo-solvent, solvent-solvent, and UV (radiation)-reductant sensitive SM abilities. The related netpoints and switches from the hair molecular networks were identified. The experimental results showed that α-keratin hairs manifested a higher ability of shape fixation under thermal stimulus followed with the stimuli of solvent and UV-radiation. Shape recovery from the hair with a temporarily fixed shape showed a higher recovery ability using solvent than the stimuli of heat and UV-radiation. The effects of coupled stimuli on hair's shape fixation and recovery and on variations of the crystal, disulfide, and hydrogen bonds were studied systematically. A structural network model was thereafter proposed to interpret the multi-coupled stimuli sensitive SM of α-keratin hair. This original study is expected to provide inspiration for exploring other natural fibers to reveal related smart functions and for making more types of remarkable adapted synthetic materials.
Collapse
Affiliation(s)
- Xueliang Xiao
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China.
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jinlian Hu
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiaoting Gui
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China.
| | - Kun Qian
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Chevigny C, Foucat L, Rolland-Sabaté A, Buléon A, Lourdin D. Shape-memory effect in amorphous potato starch: The influence of local orders and paracrystallinity. Carbohydr Polym 2016; 146:411-9. [DOI: 10.1016/j.carbpol.2016.03.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
|
18
|
Xiao X, Hu J. Animal Hairs as Water-stimulated Shape Memory Materials: Mechanism and Structural Networks in Molecular Assemblies. Sci Rep 2016; 6:26393. [PMID: 27230823 PMCID: PMC4882536 DOI: 10.1038/srep26393] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/28/2016] [Indexed: 11/23/2022] Open
Abstract
Animal hairs consisting of α-keratin biopolymers existing broadly in nature may be responsive to water for recovery to the innate shape from their fixed deformation, thus possess smart behavior, namely shape memory effect (SME). In this article, three typical animal hair fibers were first time investigated for their water-stimulated SME, and therefrom to identify the corresponding net-points and switches in their molecular and morphological structures. Experimentally, the SME manifested a good stability of high shape fixation ratio and reasonable recovery rate after many cycles of deformation programming under water stimulation. The effects of hydration on hair lateral size, recovery kinetics, dynamic mechanical behaviors and structural components (crystal, disulfide and hydrogen bonds) were then systematically studied. SME mechanisms were explored based on the variations of structural components in molecular assemblies of such smart fibers. A hybrid structural network model with single-switch and twin-net-points was thereafter proposed to interpret the water-stimulated shape memory mechanism of animal hairs. This original work is expected to provide inspiration for exploring other natural materials to reveal their smart functions and natural laws in animals including human as well as making more remarkable synthetic smart materials.
Collapse
Affiliation(s)
- Xueliang Xiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, P.R. China.,Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China
| | - Jinlian Hu
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
19
|
Tsuchiya K, Numata K. Papain-Catalyzed Chemoenzymatic Synthesis of Telechelic Polypeptides Using Bis(Leucine Ethyl Ester) Initiator. Macromol Biosci 2016; 16:1001-8. [DOI: 10.1002/mabi.201600005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/27/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Kousuke Tsuchiya
- Enzyme Research Team; Biomass Engineering Research Division; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Keiji Numata
- Enzyme Research Team; Biomass Engineering Research Division; RIKEN Center for Sustainable Resource Science; 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| |
Collapse
|
20
|
Hendrich M, Lewerdomski L, Vana P. Biomimetic triblock and multiblock copolymers containing l
-Phenylalanine moieties showing healing and enhanced mechanical properties. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Hendrich
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen; Tammannstr 6 D-37077 Göttingen Germany
| | - Lars Lewerdomski
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen; Tammannstr 6 D-37077 Göttingen Germany
| | - Philipp Vana
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen; Tammannstr 6 D-37077 Göttingen Germany
| |
Collapse
|
21
|
Labafzadeh SR, Helminen KJ, Kilpeläinen I, King AWT. Synthesis of cellulose methylcarbonate in ionic liquids using dimethylcarbonate. CHEMSUSCHEM 2015; 8:77-81. [PMID: 25378289 DOI: 10.1002/cssc.201402794] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/03/2014] [Indexed: 06/04/2023]
Abstract
Dialkylcarbonates are viewed as low-cost, low-toxicity reagents, finding application in many areas of green chemistry. Homogeneous alkoxycarbonylation of cellulose was accomplished by applying dialkycarbonates (dimethyl and diethyl carbonate) in the ionic liquid-electrolyte trioctylphosphonium acetate ([P8881 ][OAc])/DMSO or 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). Cellulose dialkylcarbonates with a moderate degree of substitution (DS∼1) are accessible via this procedure and cellulose methylcarbonate was thoroughly characterized for its chemical and physical properties after regeneration. This included HSQC & HMBC NMR, ATR-IR, molecular weight distribution, morphology, thermal properties, and barrier properties after film formation.
Collapse
Affiliation(s)
- Sara R Labafzadeh
- Chemistry Department, University of Helsinki, A I Virtasen Aukio 1, 00014 (Finland)
| | | | | | | |
Collapse
|
22
|
Humenik M, Scheibel T. Self-assembly of nucleic acids, silk and hybrid materials thereof. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:503102. [PMID: 25419786 DOI: 10.1088/0953-8984/26/50/503102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here,we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.
Collapse
|
23
|
Spider Silk: A Smart Biopolymer with Water Switchable Shape Memory Effects -Unraveling the Mystery of Superconraction. ACTA ACUST UNITED AC 2013. [DOI: 10.1108/rjta-17-02-2013-b001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|