1
|
Papagiannopoulos A, Nikolakis SP, Pamvouxoglou A, Koutsopoulou E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int J Biol Macromol 2023; 225:565-573. [PMID: 36410537 DOI: 10.1016/j.ijbiomac.2022.11.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
In this work physical carrageenan/chitosan (Car/Chit) hydrogels are prepared by electrostatic complexation between the two oppositely charged polysaccharides. The hydrogels have storage moduli in the order of 5-10 kPa and swelling ratios in the order of 5000-6000 %. At conditions where both polysaccharides are highly charged (pH 5) the swelling ratios are lower than the ones at conditions of lower dissociation i.e., at pH 2 and 7 and the opposite trend is found for the storage modulus. Chit appears to act as a crosslinker for Car as increasing its concentration the swelling ratio decreases and the moduli increase. The hydrogels can incorporate the nanoclay Laponite (Lap) and form hybrid nanocomposites where the intercalation by the two biopolymers leads to exfoliation of the clay nanoplatelets in the presence of both Car and Chit. The composite hydrogels retain the mechanical properties of the Car/Chit hydrogels at the studied pH range (pH 2 to pH 7). This shows the prepared hydrogels can be potentially used as multifunctional biomaterials for drug delivery, tissue engineering and bone regeneration applications.
Collapse
Affiliation(s)
- Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Spiridon-Paraskevas Nikolakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Andreas Pamvouxoglou
- Experimental Soft Matter Group, Condensed Matter Physics Laboratory (IPKM), Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Eleni Koutsopoulou
- Technical University of Crete, Department of Mineral Resources Engineering, GR-73100 Chania, Greece; Hellenic Survey of Geology and Mineral Exploration (HSGME), 13677 Acharnes, Greece
| |
Collapse
|
2
|
de Brito Soares AL, Maia MT, Gomes SDL, da Silva TF, Vieira RS. Polysaccharide-based bioactive adsorbents for blood-contacting implant devices. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103263. [PMID: 35630741 PMCID: PMC9145934 DOI: 10.3390/molecules27103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Collapse
|
4
|
Chandra Roy V, Abdur Razzak M, Cong Ho T, Surendhiran D, Park JS, Chun BS. Fabrication of zein and κ-carrageenan colloidal particles for encapsulation of quercetin: In-vitro digestibility and bio-potential activities. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
6
|
Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Mar Drugs 2022; 20:md20020094. [PMID: 35200624 PMCID: PMC8878971 DOI: 10.3390/md20020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the influence of kappa (κ)-carrageenan on the initial stages of the foreign body response against pectin gel. Pectin-carrageenan (P-Car) gel beads were prepared from the apple pectin and κ-carrageenan using gelling with calcium ions. The inclusion of 0.5% κ-carrageenan (Car0.5) in the 1.5 (P1.5) and 2% pectin (P2) gel formulations decreased the gel strength by 2.5 times. Car0.5 was found to increase the swelling of P2 gel beads in the cell culture medium. P2 gel beads adsorbed 30–42 mg/g of bovine serum albumin (BSA) depending on pH. P2-Car0.2, P2-Car0.5, and P1.5-Car0.5 beads reduced BSA adsorption by 3.1, 5.2, and 4.0 times compared to P2 beads, respectively, at pH 7. The P1.5-Car0.5 beads activated complement and induced the haemolysis less than gel beads of pure pectin. Moreover, P1.5-Car0.5 gel beads allowed less adhesion of mouse peritoneal macrophages, TNF-α production, and NF-κB activation than the pure pectin gel beads. There were no differences in TLR4 and ICAM-1 levels in macrophages treated with P and P-Car gel beads. P2-Car0.5 hydrogel demonstrated lower adhesion to serous membrane than P2 hydrogel. Thus, the data obtained indicate that the inclusion of κ-carrageenan in the apple pectin gel improves its biocompatibility.
Collapse
|
7
|
Huang X, Luo X, Liu L, Dong K, Yang R, Lin C, Song H, Li S, Huang Q. Formation mechanism of egg white protein/κ-Carrageenan composite film and its application to oil packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105780] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Evangelista TFS, Andrade GRS, Nascimento KNS, Dos Santos SB, de Fátima Costa Santos M, Da Ros Montes D'Oca C, Dos S Estevam C, Gimenez IF, Almeida LE. Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr Polym 2020; 245:116592. [PMID: 32718656 DOI: 10.1016/j.carbpol.2020.116592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
In the present study, supramolecular polyelectrolyte complexes (SPEC) based on a cyclodextrin-grafted chitosan derivative and carrageenan were prepared and evaluated for controlled drug release. Samples were characterized by FTIR, SEM, and ζ-potential measurements, which confirmed the formation of the polymeric complex. The phenolphthalein test confirmed the presence and availability of inclusion sites from the attached βCD. Silver sulfadiazine was used as the model drug and the association with the SPEC was studied by FTIR and computational molecular modeling, using a semi-empirical method. DRS and TEM analyses have shown that Ag+ ions from the drug were reduced to form metallic silver nanostructures. In vitro tests have shown a clear bacterial activity toward Gram-positive bacteria Staphylococcus aureus and Enterococcus durans/hirae and Gram-negative bacteria Klebsiella pneumoniae and Escherichia coli. Finally, this work shows that βCD-chitosan/carrageenan supramolecular polyelectrolyte complexes hold an expressive potential to be applied as a polymer-based system for controlled drug release.
Collapse
Affiliation(s)
- Thamasia F S Evangelista
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - George R S Andrade
- Postgraduate Program in Energy, Federal University of Espírito Santo, São Mateus, ES, Brazil.
| | - Keyte N S Nascimento
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Samuel B Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Maria de Fátima Costa Santos
- Posgraduate Program of Chemistry, NMR Laboratory, Departament of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | - Iara F Gimenez
- Department of Chemistry, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luís E Almeida
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
9
|
Rochín-Wong S, Rosas-Durazo A, Zavala-Rivera P, Maldonado A, Martínez-Barbosa ME, Vélaz I, Tánori J. Drug Release Properties of Diflunisal from Layer-By-Layer Self-Assembled κ-Carrageenan/Chitosan Nanocapsules: Effect of Deposited Layers. Polymers (Basel) 2018; 10:E760. [PMID: 30960685 PMCID: PMC6403737 DOI: 10.3390/polym10070760] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 12/20/2022] Open
Abstract
Engineering of multifunctional drug nanocarriers combining stability and good release properties remains a great challenge. In this work, natural polymers κ-carrageenan (κ-CAR) and chitosan (CS) were deposited onto olive oil nanoemulsion droplets (NE) via layer-by-layer (LbL) self-assembly to study the release mechanisms of the anti-inflammatory diflunisal (DF) as a lipophilic drug model. The nano-systems were characterized by dynamic light scattering (DLS), zeta potential (ζ-potential) measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS) and Fourier transform infrared spectroscopy (FTIR) to confirm the NE-coating with polymer layers. In addition, kinetic release studies of DF were developed by the dialysis diffusion bag technique. Mathematical models were applied to investigate the release mechanisms. The results showed that stable and suitably sized nanocapsules (~300 nm) were formed. Also, the consecutive adsorption of polyelectrolytes by charge reversal was evidenced. More interestingly, the drug release mechanism varied depending on the number of layers deposited. The nanosized systems containing up to two layers showed anomalous transport and first order kinetics. Formulations with three and four layers exhibited Case II transport releasing diflunisal with zero order kinetics. Hence, our results suggest that these polyelectrolyte nanocapsules have great potential as a multifunctional nanocarrier for drug delivery applications.
Collapse
Affiliation(s)
- Sarai Rochín-Wong
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Aarón Rosas-Durazo
- Rubio Pharma y Asociados S.A. de C.V., 83210 Hermosillo, Sonora, Mexico.
| | - Paul Zavala-Rivera
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Amir Maldonado
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - María Elisa Martínez-Barbosa
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Itziar Vélaz
- Departamento de Química, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Navarra, Spain.
| | - Judith Tánori
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
10
|
Quiñones JP, Peniche H, Peniche C. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers (Basel) 2018; 10:polym10030235. [PMID: 30966270 PMCID: PMC6414940 DOI: 10.3390/polym10030235] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023] Open
Abstract
Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine). It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.
Collapse
Affiliation(s)
- Javier Pérez Quiñones
- Institute of Polymer Chemistry, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria.
| | - Hazel Peniche
- Centro de Biomateriales, Universidad de La Habana, Ave. Universidad S/N entre G y Ronda, 10400 La Habana, Cuba.
| | - Carlos Peniche
- Facultad de Química, Universidad de La Habana, Zapata S/N entre G y Carlitos Aguirre, 10400 La Habana, Cuba.
| |
Collapse
|
11
|
Abstract
Pericytes have crucial roles in blood-brain barrier function, blood vessel function/stability, angiogenesis, endothelial cell proliferation/differentiation, wound healing, and hematopoietic stem cells maintenance. They can be isolated from fetal and adult tissues and have multipotential differentiation capacity as mesenchymal stem cells (MSCs). All of these properties make pericytes as preferred cells in the field of tissue engineering. Current developments have shown that tissue-engineered three-dimensional (3D) systems including multiple cell layers (or types) and a supporting biological matrix represent the in vivo environment better than those monolayers on plastic dishes. Tissue-engineered models are also more ethical and cheaper systems than animal models. This chapter describes the role of pericytes in tissue engineering for regenerative medicine.
Collapse
Affiliation(s)
- Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
12
|
Kononova SV, Volod'ko AV, Petrova VA, Kruchinina EV, Baklagina YG, Chusovitin EA, Skorik YA. Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan. Carbohydr Polym 2017; 181:86-92. [PMID: 29254046 DOI: 10.1016/j.carbpol.2017.10.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
Abstract
A polyelectrolyte complex (PEC) was prepared from chitosan (CS) and λ-carrageenan (λ-CAR) using a layer-by-layer deposition of polyion solutions on a plated nonporous support. This material was then used as a multilayer membrane for the pervaporation separation of aqueous ethanol solutions. The fabricated complex film (25-30μm thick) was a multilayer system (λ-CAR-PEC-CS) containing a polycation CS (MW 3.1×105, DDА 0.93), a polyanion λ-CAR (MW 3.5×105, extracted from the alga Chondrus armatus), and a PEC layer formed between the two polyion layers. X-ray diffraction indicated a significant structuring of the film in the region of the composite PEC-CS bilayer. The structural and morphological characteristics of the CS surface in the multilayer membrane, as revealed by atomic force microscopy, were close to the characteristics of the dense CS film. However, this structure changed following pervaporation (i.e., the distinct spherical structures on the surface disappeared). Similarly, the initially loose surface of λ-CAR in the composite changed to an ordered domain after pervaporation. The transport properties of the pervaporation membranes were tested by examining the separation of ethanol-water mixtures of different compositions. The flux increased with an increase in the weight percentage of water in the feed mixture, but the separation capacity of the membrane was unchanged. In a range of feed concentrations of 50-94wt%, the membrane mainly releases water with a corresponding concentration in the permeate of 99.9-99.8wt% and substantial fluxes of 0.003-1.130kgm-2h-1 at 40°C. The obtained results indicate significant prospects for the use of non-gelling type CARs for the formation of highly effective pervaporation membranes.
Collapse
Affiliation(s)
- Svetlana V Kononova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Aleksandra V Volod'ko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Pr. 100-letiya Vladivostoka 159, Vladivostok 690022, Russian Federation
| | - Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Elena V Kruchinina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Yulia G Baklagina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation
| | - Evgeniy A Chusovitin
- Institute for Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, ul. Radio 5, Vladivostok 690041, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg 199004, Russian Federation; Institute of Experimental Medicine, Almazov National Medical Research Centre, Akkuratova ul. 2, St. Petersburg 197341, Russian Federation; Tyumen State University, ul. Volodarskogo 6, Tyumen 625003, Russian Federation.
| |
Collapse
|
13
|
Campelo CS, Chevallier P, Vaz JM, Vieira RS, Mantovani D. Sulfonated chitosan and dopamine based coatings for metallic implants in contact with blood. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 72:682-691. [PMID: 28024638 DOI: 10.1016/j.msec.2016.11.133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/01/2016] [Accepted: 11/26/2016] [Indexed: 11/28/2022]
Abstract
Thrombosis and calcification constitute the main clinical problems when blood-interacting devices are implanted in the body. Coatings with thin polymer layers represent an acknowledged strategy to modulate interactions between the material surface and the blood environment. To ensure the implant success, at short-term the coating should limit platelets adhesion and delay the clot formation, and at long-term it should delay the calcification process. Sulfonated chitosan, if compared to native chitosan, shows the unique ability to reduce proteins adsorption, decrease thrombogenic properties and limit calcification. In this work, stainless steel surfaces, commonly used for cardiovascular applications, were coated with sulfonated chitosan, by using dopamine and PEG as anchors, and the effect of these grafted surfaces on platelet adhesion, clot formation as well as on calcification were investigated. Surface characterization techniques evidenced that the coating formation was successful, and the sulfonated chitosan grafted sample exhibited a higher roughness and hydrophilicity, if compared to native chitosan one. Moreover, sulfonated surface limited platelet activation and the process of clot formation, thus confirming its high biological performances in blood. Calcium deposits were also lower on the sulfonated chitosan sample compared to the chitosan one, thus showing that calcification was minimal in presence of sulfonate groups. In conclusion, this sulfonated-modified surface has potential to be as blood-interacting material.
Collapse
Affiliation(s)
- Clayton S Campelo
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada; Federal University of Ceará, Department of Chemical Engineering, Campus do Pici - Bloco 709, Fortaleza, Ceará 60455-760, Brazil
| | - Pascale Chevallier
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada
| | - Juliana M Vaz
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada
| | - Rodrigo S Vieira
- Federal University of Ceará, Department of Chemical Engineering, Campus do Pici - Bloco 709, Fortaleza, Ceará 60455-760, Brazil.
| | - Diego Mantovani
- Lab Biomaterials and Bioengineering, CRC-Tier I, Department of Min-Met-Materials Engineering, Laval University & CHU de Quebec Research Center, G1V 0A6 Quebec City, QC, Canada.
| |
Collapse
|
14
|
Yew HC, Misran M. Preparation and characterization of pH dependent κ-carrageenan-chitosan nanoparticle as potential slow release delivery carrier. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0489-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
In vitro evaluation of anti-calcification and anti-coagulation on sulfonated chitosan and carrageenan surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:241-248. [DOI: 10.1016/j.msec.2015.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/12/2015] [Accepted: 10/07/2015] [Indexed: 11/20/2022]
|
16
|
Li J, Yang B, Qian Y, Wang Q, Han R, Hao T, Shu Y, Zhang Y, Yao F, Wang C. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCsin vitro. J Biomed Mater Res B Appl Biomater 2014; 103:1498-510. [DOI: 10.1002/jbm.b.33339] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/20/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Junjie Li
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; No. 27, Taiping Road Beijing 100850 China
| | - Boguang Yang
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Yufeng Qian
- Department of Chemistry and Biochemistry; University of Texas at Austin; 2500 Speedway Austin Texas 78712
| | - Qiyu Wang
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; No. 27, Taiping Road Beijing 100850 China
| | - Ruijin Han
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; No. 27, Taiping Road Beijing 100850 China
| | - Tong Hao
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; No. 27, Taiping Road Beijing 100850 China
| | - Yao Shu
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; No. 27, Taiping Road Beijing 100850 China
- Department of Stomatology; Affiliated Hospital of Academy of Military Medical Sciences; Beijing 100071 China
| | - Yabin Zhang
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Fanglian Yao
- Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies; Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences; No. 27, Taiping Road Beijing 100850 China
| |
Collapse
|