1
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
2
|
Liu C, Wang Y, Wang S, Xu P, Liu R, Han D, Wei Y. A Star-Shaped Copolymer with Tetra-Hydroxy-Phenylporphyrin Core and Four PNIPAM- b-PMAGA Arms for Targeted Photodynamic Therapy. Polymers (Basel) 2023; 15:polym15030509. [PMID: 36771810 PMCID: PMC9919623 DOI: 10.3390/polym15030509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The novel thermosensitive star-shaped tetra-hydroxy-phenylporphyrin-cored (THPP) double hydrophilic poly(N-isopropylacrylamide)-b-poly(methylacrylamide glucose) block copolymers (THPP-(PNIPAM-b-PMAGA)4) were synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization. Notably, the low critical solution temperatures (LCSTs) of THPP-(PNIPAM-b-PMAGA)4 were above normal body temperature (37 °C) which depended on the hydrophilic PMAGA contents of copolymers. When the temperature was higher than the LCST of the copolymer, the copolymer could be neutralized into micelles in aqueous and could be coated with antitumor drugs and released around tumor cells. The MTT study indicated that THPP-(PNIPAM-b-PMAGA)4 had a low toxicity to L929 and HeLa cells in the absence of light. However, THPP-(PNIPAM-b-PMAGA)4 showed a high toxicity with HeLa cells under light irradiation which could be used as a potential photosensitizer for photodynamic therapy (PDT). In addition, THPP-(PNIPAM-b-PMAGA)4 showed specific a recognition function with Concanavalin A (Con A) to achieve active targeted drug delivery. This work provides a new approach for the development of tumor targeting and chemotherapy/PDT.
Collapse
Affiliation(s)
- Changling Liu
- School of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Yirong Wang
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Siyu Wang
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Pengcheng Xu
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Renning Liu
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
| | - Dandan Han
- College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, China
- Correspondence: (D.H.); (Y.W.)
| | - Yen Wei
- Department of Chemistry, The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
- Correspondence: (D.H.); (Y.W.)
| |
Collapse
|
3
|
Bhattacharya K, Das S, Kundu M, Singh S, Kalita U, Mandal M, Singha NK. Gold Nanoparticle Embedded Stimuli-Responsive Functional Glycopolymer: A Potential Material for Synergistic Chemo-Photodynamic Therapy of Cancer Cells. Macromol Biosci 2022; 22:e2200069. [PMID: 35797485 DOI: 10.1002/mabi.202200069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy has emerged as a non-invasive treatment modality for several types of cancers. However, conventional hydrophobic photosensitizers (PS) suffer from low water solubility and poor tumor-targeting ability. Therefore, PS modified with glycopolymers can offer adequate water solubility, biocompatibility and tumor-targeting ability due to the presence of multiple sugar units. In this study, a well-defined block copolymer (BCP) poly(3-O-methacryloyl-D-glucopyranose)-b-poly(2-(4-formylbenzoyloxy)ethylmethacrylate) (PMAG-b-PFBEMA) containing pendant glucose and aldehyde units was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization method. A water-soluble PS (toluidine blue O; TBO) and a potent anti-cancer drug, Doxorubicin (Dox) were introduced to the polymer backbone via acid-labile Schiff-base reaction (PMAG-b-PFBEMA_TBO_Dox). The PMAG-b-PFBEMA_TBO_Dox was then anchored on the surface of AuNP via electrostatic interaction. This hybrid system exhibited excellent reactive oxygen species (ROS) generating ability under exposure of 630 nm LED along with triggered release of Dox under the acidic pH of tumor cells. The in vitro cytotoxicity study on human breast cancer cell line, MDA MB 231, for this hybrid system showed promising results due to the synergistic effect of ROS and Dox released. Thus, this glycopolymer-based dual (chemo-photodynamic) therapy model can work as potential material for future therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sudarshan Singh
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Uddhab Kalita
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
4
|
Ma X, Xiong Y, Liu Y, Han J, Duan G, Chen Y, He S, Mei C, Jiang S, Zhang K. When MOFs meet wood: From opportunities toward applications. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
6
|
Kim Y, Hyun JY, Shin I. Multivalent glycans for biological and biomedical applications. Chem Soc Rev 2021; 50:10567-10593. [PMID: 34346405 DOI: 10.1039/d0cs01606c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recognition of glycans by proteins plays a crucial role in a variety of physiological processes in cells and living organisms. In addition, interactions of glycans with proteins are involved in the development of diverse diseases, such as pathogen infection, inflammation and tumor metastasis. It is well-known that multivalent glycans bind to proteins much more strongly than do their monomeric counterparts. Owing to this property, numerous multivalent glycans have been utilized to elucidate glycan-mediated biological processes and to discover glycan-based biomedical agents. In this review, we discuss recent advances (2014-2020) made in the development and biological and biomedical applications of synthetic multivalent glycans, including neoglycopeptides, neoglycoproteins, glycodendrimers, glycopolymers, glyconanoparticles and glycoliposomes. We hope this review assists researchers in the design and development of novel multivalent glycans with predictable activities.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Student S, Milewska M, Ostrowski Z, Gut K, Wandzik I. Microchamber microfluidics combined with thermogellable glycomicrogels – Platform for single cells study in an artificial cellular microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111647. [DOI: 10.1016/j.msec.2020.111647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
|
8
|
Zhang M, Zhang X, Cai S, Mei H, He Y, Huang D, Shi W, Li S, Cao J, He B. Photo-induced specific intracellular release EGFR inhibitor from enzyme/ROS-dual sensitive nano-platforms for molecular targeted-photodynamic combinational therapy of non-small cell lung cancer. J Mater Chem B 2020; 8:7931-7940. [PMID: 32779670 DOI: 10.1039/d0tb01053g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular targeted-photodynamic combinational therapy is a promising strategy to enhance antitumor effects; meanwhile, current nanocarriers face challenges of limited selective delivery and release of therapeutic agents to specific tumor sites, which significantly compromises their therapeutic efficacy. Herein, we report active-targeting, enzyme- and ROS-dual responsive nanoparticles (HPGBCA) consisting of CD44-targeting hyaluronic acid (HA) shells and afatinib (AFT)-loaded, ROS-sensitive poly(l-lysine)-conjugated chlorin e6 (Ce6) derivative nanoparticle cores (PGBCA). HPGBCA can actively carry AFT and Ce6 specifically to tumor cells due to the negatively charged HA and CD44-mediated active targeting. Subsequently, hyaluronidase in the endosome will further spur the degradation of the HA shell to prompt exposure of the positively charged PGBCA core for rapid endosomal escape and intracellular delivery of AFT and Ce6. Furthermore, the generation of ROS produced by Ce6 under NIR irradiation can trigger the rapid oxidation of the thioether linker to facilitate the release of AFT into the cytoplasm. In vitro and in vivo studies demonstrated that the released AFT and excessive ROS at the local site can synergistically induce cell apoptosis to enhance the therapeutic efficacy without side effects. Our developed intelligent nanoparticle provides new avenues to achieve on-demand, specific intracellular drug release for improved molecular targeted-photodynamic combination therapeutic efficacy.
Collapse
Affiliation(s)
- Man Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mosaiab T, Farr DC, Kiefel MJ, Houston TA. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev 2019; 151-152:94-129. [PMID: 31513827 DOI: 10.1016/j.addr.2019.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Many deadly infections are produced by microorganisms capable of sustained survival in macrophages. This reduces exposure to chemadrotherapy, prevents immune detection, and is akin to criminals hiding in police stations. Therefore, the use of glyco-nanoparticles (GNPs) as carriers of therapeutic agents is a burgeoning field. Such an approach can enhance the penetration of drugs into macrophages with specific carbohydrate targeting molecules on the nanocarrier to interact with macrophage lectins. Carbohydrates are natural biological molecules and the key constituents in a large variety of biological events such as cellular communication, infection, inflammation, enzyme trafficking, cellular migration, cancer metastasis and immune functions. The prominent characteristics of carbohydrates including biodegradability, biocompatibility, hydrophilicity and the highly specific interaction of targeting cell-surface receptors support their potential application to drug delivery systems (DDS). This review presents the 21st century development of carbohydrate-based nanocarriers for drug targeting of therapeutic agents for diseases localized in macrophages. The significance of natural carbohydrate-derived nanoparticles (GNPs) as anti-microbial drug carriers is highlighted in several areas of treatment including tuberculosis, salmonellosis, leishmaniasis, candidiasis, and HIV/AIDS.
Collapse
Affiliation(s)
- Tamim Mosaiab
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Dylan C Farr
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Milton J Kiefel
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | - Todd A Houston
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| |
Collapse
|
10
|
Tian J, Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Breitenbach BB, Steiert E, Konhäuser M, Vogt LM, Wang Y, Parekh SH, Wich PR. Double stimuli-responsive polysaccharide block copolymers as green macrosurfactants for near-infrared photodynamic therapy. SOFT MATTER 2019; 15:1423-1434. [PMID: 30662988 DOI: 10.1039/c8sm02204f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The NIR absorbing photosensitizer phthalocyanine zinc (PC(Zn)) was stabilized in aqueous media as water-dispersible nanoparticles with a reduction- and pH-responsive full polysaccharide block copolymer. A cellular uptake and also photo switchable intracellular activity of the cargo upon irradiation at wavelengths in the near infrared region were shown. The block copolymer was synthesized by applying a copper-free click strategy based on a thiol exchange reaction, creating an amphiphilic double-stimuli-responsive mixed disulfide. The dual-sensitive polysaccharide micelles represent a non-toxic and biodegradable green macrosurfactant for the delivery of phthalocyanine zinc. By encapsulation into micellar nanoparticles, the bioavailability of PC(Zn) increased significantly, enabling smart photodynamic therapy for future applications in cancer-related diseases.
Collapse
Affiliation(s)
- Benjamin B Breitenbach
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Ma Z, Zhu XX. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications. J Mater Chem B 2019; 7:1361-1378. [DOI: 10.1039/c8tb03162b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent progress in random and block copolymers containing sugar and other biocompounds, including their design, synthesis, properties and selected applications.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| | - X. X. Zhu
- Département de Chimie
- Université de Montréal
- Montreal
- Canada
| |
Collapse
|
13
|
Sun P, Yuan P, Wang G, Deng W, Tian S, Wang C, Lu X, Huang W, Fan Q. High Density Glycopolymers Functionalized Perylene Diimide Nanoparticles for Tumor-Targeted Photoacoustic Imaging and Enhanced Photothermal Therapy. Biomacromolecules 2017; 18:3375-3386. [DOI: 10.1021/acs.biomac.7b01029] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Pengcheng Yuan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Gaina Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Weixing Deng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Sichao Tian
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Chao Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| | - Xiaomei Lu
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key
Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced
Materials (IAM), Jiangsu National Synergetic Innovation Center for
Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, People’s Republic of China
| |
Collapse
|
14
|
Obata M, Tanaka S, Mizukoshi H, Ishihara E, Takahashi M, Hirohara S. RAFT synthesis of an amphiphilic block copolymer bearing chlorin rings in the hydrophobic segment and its application in photodynamic therapy. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Shuto Tanaka
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Hiroshi Mizukoshi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Eika Ishihara
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering; University of Yamanashi; 4-4-37 Takeda Kofu 400-8510 Japan
| | - Shiho Hirohara
- Department of Chemical and Biological Engineering; National Institute of Technology, Ube College; 2-14-1 Tokiwadai Ube 755-8555 Japan
| |
Collapse
|
15
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
16
|
Sun P, Wang G, Hou H, Yuan P, Deng W, Wang C, Lu X, Fan Q, Huang W. A water-soluble phosphorescent conjugated polymer brush for tumor-targeted photodynamic therapy. Polym Chem 2017. [DOI: 10.1039/c7py01248a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A glycopolymer modified water-soluble conjugated polymer brush was developed for Hep G2 tumor targeted photodynamic therapy.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Gaina Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Huanzhi Hou
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Pengcheng Yuan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Weixing Deng
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Chao Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
17
|
Zhang H, Ren T, Yu M, Zhang H, Bai L, Wu Y, Wang S, Ba X. Synthesis and characterization of curcumin-incorporated glycopolymers with enhanced water solubility and reduced cytotoxicity. Macromol Res 2016. [DOI: 10.1007/s13233-016-4095-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Li Z, Zhang P, Lu W, Peng L, Zhao Y, Chen G. Ratiometric Fluorescent pH Probes Based on Glycopolymers. Macromol Rapid Commun 2016; 37:1513-9. [DOI: 10.1002/marc.201600242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/25/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Zhiyun Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| | - Pengshan Zhang
- Cyrus Tang Hematology Center; Soochow University; Suzhou 215123 China
- The Collaborative Innovation Center of Hematology; Soochow University; Suzhou 215006 China
| | - Wei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| | - Lun Peng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| | - Yun Zhao
- Cyrus Tang Hematology Center; Soochow University; Suzhou 215123 China
- The Collaborative Innovation Center of Hematology; Soochow University; Suzhou 215006 China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research; Soochow University; Suzhou 215006 China
| |
Collapse
|
19
|
Wang HS, Song M, Hang TJ. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:2881-2898. [PMID: 26785308 DOI: 10.1021/acsami.5b10465] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.
Collapse
Affiliation(s)
- Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| | - Min Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| | - Tai-Jun Hang
- Department of Pharmaceutical Analysis, China Pharmaceutical University , Nanjing, 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education , Nanjing 210009, China
| |
Collapse
|
20
|
Jana A, McKenzie L, Wragg AB, Ishida M, Hill JP, Weinstein JA, Baggaley E, Ward MD. Porphyrin/Platinum(II) C^N^N Acetylide Complexes: Synthesis, Photophysical Properties, and Singlet Oxygen Generation. Chemistry 2016; 22:4164-74. [DOI: 10.1002/chem.201504509] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/23/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Atanu Jana
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Luke McKenzie
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Ashley B. Wragg
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Masatoshi Ishida
- Education Center for Global Leaders in Molecular Systems for Devices; Kyushu University; Fukuoka 819-0395 Japan
| | - Jonathan P. Hill
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); Namiki (Tsukuba Ibaraki 305-0044 Japan
| | - Julia A. Weinstein
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Elizabeth Baggaley
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| | - Michael D. Ward
- Department of Chemistry; University of Sheffield; Sheffield S3 7HF United Kingdom
| |
Collapse
|
21
|
Li X, Zhang W, Chen G. Synthesis of Non-spherical Glycopolymer-Decorated Nanoparticles: Combing Thiol-ene with Catecholic Chemistry. Methods Mol Biol 2016; 1367:149-155. [PMID: 26537471 DOI: 10.1007/978-1-4939-3130-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glycopolymers with carbohydrate side chains are currently being applied in many fields, with much potential for disease treatment. The shape of glycopolymer-bearing nanoparticles has obvious effects on the nanoparticle-cell interaction and is therefore important for the applications of glycopolymers in biological systems. Here a synthetic approach to prepare non-spherical glycopolymer-coated iron oxide nanoparticles is provided, by combing the convenience of inorganic shape control, catecholic chemistry, and thiol-ene reaction.
Collapse
Affiliation(s)
- Xiao Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
22
|
Xue L, Xiong X, Chen K, Luan Y, Chen G, Chen H. Modular synthesis of glycopolymers with well-defined sugar units in the side chain via Ugi reaction and click chemistry: hetero vs. homo. Polym Chem 2016. [DOI: 10.1039/c6py00734a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modularized glycopolymers were prepared via Ugi and click reactions, and used as models to investigate their binding abilities.
Collapse
Affiliation(s)
- Lulu Xue
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xinhong Xiong
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215123
- P. R. China
| | - Yafei Luan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215123
- P. R. China
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
23
|
Chen K, Bao M, Muñoz Bonilla A, Zhang W, Chen G. A biomimicking and electrostatic self-assembly strategy for the preparation of glycopolymer decorated photoactive nanoparticles. Polym Chem 2016. [DOI: 10.1039/c6py00129g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A biomimicking and electrostatic self-assembly strategy for the preparation of glycopolymer decorated photoactive nanoparticles.
Collapse
Affiliation(s)
- Kui Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Meimei Bao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Alexandra Muñoz Bonilla
- Departamento de Química Física Aplicada
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| |
Collapse
|
24
|
Wang S, Yuan F, Chen K, Chen G, Tu K, Wang H, Wang LQ. Synthesis of Hemoglobin Conjugated Polymeric Micelle: A ZnPc Carrier with Oxygen Self-Compensating Ability for Photodynamic Therapy. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00571] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shasha Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fang Yuan
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Kui Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Gaojian Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, 215006, P. R. China
| | - Kehua Tu
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hongjun Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li-Qun Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
25
|
Huang Z, Fu C, Wang S, Yang B, Wang X, Zhang Q, Yuan J, Tao L, Wei Y. Optically Active Polymer Via One-Pot Combination of Chemoenzymatic Transesterification and RAFT Polymerization: Synthesis and Its Application in Hybrid Silica Particles. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zengfang Huang
- College of Chemistry and Biology Zhongshan Institute; University of Electronic Science & Technology of China; Zhongshan 528402 P.R. China
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Changkui Fu
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Shiqi Wang
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Bin Yang
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Xing Wang
- College of Life Science and Technology; Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Qingsong Zhang
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Jinying Yuan
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Lei Tao
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| | - Yen Wei
- Department of Chemistry; the Tsinghua Center for Frontier Polymer Research; Tsinghua University; Beijing 100084 P.R. China
| |
Collapse
|
26
|
|
27
|
Abstract
This review focuses on the different approaches to synthesizing glycopolymer-based nanoparticles and their various applications.
Collapse
Affiliation(s)
- Xiao Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006
- P. R. China
| |
Collapse
|
28
|
Xue L, Lyu Z, Luan Y, Xiong X, Pan J, Chen G, Chen H. Efficient cancer cell capturing SiNWAs prepared via surface-initiated SET-LRP and click chemistry. Polym Chem 2015. [DOI: 10.1039/c5py00247h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enhanced specific cancer cell capturing effect generated by combining a glycopolymer and aptamer through SI-SET-LRP and click chemistry.
Collapse
Affiliation(s)
- Lulu Xue
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhonglin Lyu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yafei Luan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Xinhong Xiong
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Jingjing Pan
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215123
- P. R. China
| | - Hong Chen
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
29
|
Yuan F, Wang S, Lu W, Chen G, Tu K, Jiang H, Wang LQ. Facile preparation of cancer-specific polyelectrolyte nanogels from natural and synthetic sugar polymers. J Mater Chem B 2015; 3:4546-4554. [DOI: 10.1039/c5tb00539f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glycosylated polyelectrolyte nanogels prepared from natural and synthetic sugar polymers with excellent colloidal stability, specific bioactivities and imaging ability.
Collapse
Affiliation(s)
- Fang Yuan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Shasha Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Wei Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou
- P. R. China
| | - Kehua Tu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Hongliang Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Li-Qun Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
30
|
Yilmaz G, Becer CR. Glycopolymer code based on well-defined glycopolymers or glyconanomaterials and their biomolecular recognition. Front Bioeng Biotechnol 2014; 2:39. [PMID: 25353022 PMCID: PMC4196633 DOI: 10.3389/fbioe.2014.00039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
Advances in the glycopolymer technology have allowed the preparation of more complex and well-defined glycopolymers/particles with several architectures from linear to globular structures (such as micelles, dendrimers, and nanogels). In the last decade, functionalized self-assembled/decided nano-objects and scaffolds containing glycopolymers were designed to develop many biological and biomedical applications in diseases treatments such as pathogen detection, inhibitors of toxins, and lectin-based biosensors. These studies will facilitate the understanding and investigation of the sugar code on the carbohydrate-lectin interactions, which are significantly influenced by the glycopolymer architecture, valency, size, and density of binding elements. In this context, these advanced and selected glycopolymers/particles showing specific interactions with various lectins are highlighted.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, UK
- Department of Basic Sciences, Turkish Military Academy, Ankara, Turkey
| | - C. Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| |
Collapse
|
31
|
Jeong S, Park W, Lee CS, Na K. A cancer-recognizing polymeric photosensitizer based on the tumor extracellular pH response of conjugated polymers for targeted cancer photodynamic therapy. Macromol Biosci 2014; 14:1688-95. [PMID: 25251581 DOI: 10.1002/mabi.201400361] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/03/2014] [Indexed: 12/12/2022]
Abstract
Herein, a cancer-recognizing polymeric photosensitizer (CRPP) was demonstrated not only for high water solubility but also for pH-responsive targeted photodynamic cancer therapy. The synthesized CRPP exhibited high water solubility and the pH-dependent charge-switching property. From an in vitro cellular internalization study with HCT-116 human colon cancer cells, significantly enhanced cellular uptake as detected for CRPP at pH 6.5 compared to the cellular uptake of CRPP at pH 7.4, which led to enhanced cytotoxicity in the cancer cells. Finally, the CRPP was found to exhibit high tumor-targeting efficacy in an in vivo tumor model and was finally excreted through the renal route.
Collapse
Affiliation(s)
- Songhee Jeong
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-Ro, Wonmi-Gu, Bucheon-Si, Gyeonggi Do, 420-743, Korea
| | | | | | | |
Collapse
|
32
|
Lu J, Fu C, Wang S, Tao L, Yan L, Haddleton DM, Chen G, Wei Y. From Polymer Sequence Control to Protein Recognition: Synthesis, Self-Assembly and Lectin Binding. Macromolecules 2014. [DOI: 10.1021/ma500664u] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiawei Lu
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Changkui Fu
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shiqi Wang
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Litang Yan
- Key
Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, U.K
| | - Gaojian Chen
- Center
for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phophorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
Yang C, Li Q, Li Y. Targeting nuclear receptors with marine natural products. Mar Drugs 2014; 12:601-35. [PMID: 24473166 PMCID: PMC3944506 DOI: 10.3390/md12020601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qianrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
34
|
Li X, Bao M, Weng Y, Yang K, Zhang W, Chen G. Glycopolymer-coated iron oxide nanoparticles: shape-controlled synthesis and cellular uptake. J Mater Chem B 2014; 2:5569-5575. [DOI: 10.1039/c4tb00852a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Serum-stable glyco-nanoparticles with controlled shape were easily obtained and exhibit shape-dependent cell uptake behaviors as well as enhanced activity toward specific lectins.
Collapse
Affiliation(s)
- Xiao Li
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006, P. R. China
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Meimei Bao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006, P. R. China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006, P. R. China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006, P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006, P. R. China
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research
- Soochow University
- Suzhou 215006, P. R. China
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|