1
|
He T, Yang Y, Chen XB. Propulsion mechanisms of micro/nanorobots: a review. NANOSCALE 2024; 16:12696-12734. [PMID: 38940742 DOI: 10.1039/d4nr01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Micro/nanomotors (MNMs) are intelligent, efficient and promising micro/nanorobots (MNR) that can respond to external stimuli (e.g., chemical energy, temperature, light, pH, ultrasound, magnetic, biosignals, ions) and perform specific tasks. The MNR can adapt to different external stimuli and transform into various functional forms to match different application scenarios. So far, MNR have found extensive application in targeted therapy, drug delivery, tissue engineering, environmental remediation, and other fields. Despite the promise of MNR, there are few reviews that focus on them. To shed new light on the further development of the field, it is necessary to provide an overview of the current state of development of these MNR. Therefore, this paper reviews the research progress of MNR in terms of propulsion mechanisms, and points out the pros and cons of different stimulus types. Finally, this paper highlights the current challenges faced by MNR and proposes possible solutions to facilitate the practical application of MNR.
Collapse
Affiliation(s)
- Tao He
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Yonghui Yang
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
2
|
He T, Yang Y, Chen XB. Preparation, Stimulus-Response Mechanisms and Applications of Micro/Nanorobots. MICROMACHINES 2023; 14:2253. [PMID: 38138422 PMCID: PMC10745970 DOI: 10.3390/mi14122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Micro- and nanorobots are highly intelligent and efficient. They can perform various complex tasks as per the external stimuli. These robots can adapt to the required functional form, depending on the different stimuli, thus being able to meet the requirements of various application scenarios. So far, microrobots have been widely used in the fields of targeted therapy, drug delivery, tissue engineering, environmental remediation and so on. Although microbots are promising in some fields, few reviews have yet focused on them. It is therefore necessary to outline the current status of these microbots' development to provide some new insights into the further evolution of this field. This paper critically assesses the research progress of microbots with respect to their preparation methods, stimulus-response mechanisms and applications. It highlights the suitability of different preparation methods and stimulus types, while outlining the challenges experienced by microbots. Viable solutions are also proposed for the promotion of their practical use.
Collapse
Affiliation(s)
| | | | - Xue-Bo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (Y.Y.)
| |
Collapse
|
3
|
Song J, Kim S, Saouaf O, Owens C, McKinley GH, Holten-Andersen N. Soft Viscoelastic Magnetic Hydrogels from the In Situ Mineralization of Iron Oxide in Metal-Coordinate Polymer Networks. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37916735 PMCID: PMC10658456 DOI: 10.1021/acsami.3c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/24/2023] [Indexed: 11/03/2023]
Abstract
The design of soft magnetic hydrogels with high concentrations of magnetic particles is complicated by weak retention of the iron oxide particles in the hydrogel scaffold. Here, we propose a design strategy that circumvents this problem through the in situ mineralization of iron oxide nanoparticles within polymer hydrogels functionalized with strongly iron-coordinating nitrocatechol groups. The mineralization process facilitates the synthesis of a high concentration of large iron oxide nanoparticles (up to 57 wt % dry mass per single cycle) in a simple one-step process under ambient conditions. The resulting hydrogels are soft (kPa range) and viscoelastic and exhibit strong magnetic actuation. This strategy offers a pathway for the energy-efficient design of soft, mechanically robust, and magneto-responsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Jake Song
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Sungjin Kim
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Olivia Saouaf
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Crystal Owens
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Gareth H. McKinley
- Department
of Materials Science and Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Niels Holten-Andersen
- Department
of Bioengineering and Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Zhou Y, Ye M, Hu C, Qian H, Nelson BJ, Wang X. Stimuli-Responsive Functional Micro-/Nanorobots: A Review. ACS NANO 2023; 17:15254-15276. [PMID: 37534824 DOI: 10.1021/acsnano.3c01942] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Stimuli-responsive functional micro-/nanorobots (srFM/Ns) are a class of intelligent, efficient, and promising microrobots that can react to external stimuli (such as temperature, light, ultrasound, pH, ion, and magnetic field) and perform designated tasks. Through adaptive transformation into the corresponding functional forms, they can perfectly match the demands depending on different applications, which manifest extremely important roles in targeted therapy, biological detection, tissue engineering, and other fields. Promising as srFM/Ns can be, few reviews have focused on them. It is therefore necessary to provide an overview of the current development of these intelligent srFM/Ns to provide clear inspiration for further development of this field. Hence, this review summarizes the current advances of stimuli-responsive functional microrobots regarding their response mechanism, the achieved functions, and their applications to highlight the pros and cons of different stimuli. Finally, we emphasize the existing challenges of srFM/Ns and propose possible strategies to help accelerate the study of this field and promote srFM/Ns toward actual applications.
Collapse
Affiliation(s)
- Yan Zhou
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Min Ye
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| | - Chengzhi Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huihuan Qian
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Bradley J Nelson
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Xiaopu Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, Guangdong 518129, China
| |
Collapse
|
5
|
Kuhrts L, Helmbrecht L, Noorduin WL, Pohl D, Sun X, Palatnik A, Wetzker C, Jantschke A, Schlierf M, Zlotnikov I. Recruiting Unicellular Algae for the Mass Production of Nanostructured Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300355. [PMID: 36775880 PMCID: PMC10104627 DOI: 10.1002/advs.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Functional capacities of lead halide perovskites are strongly dependent on their morphology, crystallographic texture, and internal ultrastructure on the nano- and the meso-scale. In the last decade, significant efforts are directed towards the development of novel synthesis routes that would overcome the morphological constraints provided by the physical and crystallographic properties of these materials. In contrast, various living organisms, such as unicellular algae, have the ability to mold biogenic crystals into a vast variety of intricate nano-architectured shapes while keeping their single crystalline nature. Here, using the cell wall of the dinoflagellate L. granifera as a model, sustainably harvested biogenic calcite is successfully transformed into nano-structured perovskites. Three variants of lead halide perovskites CH3 NH3 PbX3 are generated with X = Cl- , Br- and I- ; exhibiting emission peak-wavelength ranging from blue, to green, to near-infrared, respectively. The approach can be used for the mass production of nano-architectured perovskites with desired morphological, textural and, consequently, physical properties exploiting the numerous templates provided by calcite forming unicellular organisms.
Collapse
Affiliation(s)
- Lucas Kuhrts
- B CUBE – Center for Molecular BioengineeringDresden University of TechnologyTatzberg 4101307DresdenGermany
| | | | - Willem L. Noorduin
- AMOLFScience Park 104Amsterdam1098 XGThe Netherlands
- Van ‘t Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdam1090 GDThe Netherlands
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN)Center for Advancing Electronics Dresden (cfaed)Dresden University of TechnologyHelmholtzstraße 1801069DresdenGermany
| | - Xiaoxiao Sun
- Helmholtz‐Zentrum Dresden RossendorfBautzner Landstraße 40001328DresdenGermany
| | - Alexander Palatnik
- Dresden Integrated Center for Applied Physics and Photonic MaterialsDresden University of TechnologyNöthnitzer Str. 6101187DresdenGermany
| | - Cornelia Wetzker
- Light microscopy facility of the Center for Molecular and Cellular Bioengineering (CMCB)Dresden University of Technology01062DresdenGermany
| | - Anne Jantschke
- Institute for GeosciencesJohannes Gutenberg University Mainz55099MainzGermany
| | - Michael Schlierf
- B CUBE – Center for Molecular BioengineeringDresden University of TechnologyTatzberg 4101307DresdenGermany
- Physics of LifeDFG Cluster of ExcellenceTU Dresden01062DresdenGermany
| | - Igor Zlotnikov
- B CUBE – Center for Molecular BioengineeringDresden University of TechnologyTatzberg 4101307DresdenGermany
| |
Collapse
|
6
|
Microencapsulation of Lacticaseibacillus rhamnosus GG for Oral Delivery of Bovine Lactoferrin: Study of Encapsulation Stability, Cell Viability, and Drug Release. Biomimetics (Basel) 2022; 7:biomimetics7040152. [PMID: 36278709 PMCID: PMC9624373 DOI: 10.3390/biomimetics7040152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 12/02/2022] Open
Abstract
Probiotics are delivered orally for treating gastrointestinal tract (GIT) infections; thus, they should be protected from the harsh environment of the GIT, such as through microencapsulation. Here, we microencapsulated cells of the probiotic Lacticaseibacillus rhamnosus GG via the liquid-droplet-forming method and evaluated them for oral delivery of bovine lactoferrin (bLf). Briefly, sodium alginate capsules (G-capsules) were first prepared, crosslinked with calcium chloride (C-capsules), and then modified with disodium hydrogen phosphate (M-capsules). All capsules showed good swelling behavior in the order of G-capsules > C-capsules > M-capsules in simulated gastric fluid (SGF, pH 2) and simulated intestinal fluid (SIF, pH 7.2). FE-SEM observations showed the formation of porous surfaces and successful microencapsulation of L. rhamnosus GG cells. The microencapsulated probiotics showed 85% and 77% viability in SGF and SIF, respectively, after 300 min. Compared to the 65% and 70% viability of gelation-encapsulated and crosslinking-encapsulated L. rhamnosus GG cells, respectively, the mineralization-encapsulated cells showed up to 85% viability after 300 min in SIF. The entrapment of bLf in the mineralization-encapsulated L. rhamnosus GG cells did not show any toxicity to the cells. FTIR spectroscopy confirmed the successful surface modification of L. rhamnosus GG cells via gelation, crosslinking, and mineralization, along with the entrapment of bLf on the surface of microencapsulated cells. The findings of these studies show that the microencapsulated L. rhamnosus GG cells with natural polyelectrolytes could be used as stable carriers for the oral and sustainable delivery of beneficial biotherapeutics without compromising their viability and the activity of probiotics.
Collapse
|
7
|
Adjuik TA, Nokes SE, Montross MD. Evaluating the feasibility of using lignin–alginate beads with starch additive for entrapping and releasing
Rhizobium
spp. J Appl Polym Sci 2022. [DOI: 10.1002/app.53181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
8
|
Kuyukina MS, Glebov GG, Ivshina IB. Effects of Nickel Nanoparticles on Rhodococcus Cell Surface Morphology and Nanomechanical Properties. NANOMATERIALS 2022; 12:nano12060951. [PMID: 35335763 PMCID: PMC8955278 DOI: 10.3390/nano12060951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022]
Abstract
Nickel nanoparticles (NPs) are used for soil remediation and wastewater treatment due to their high adsorption capacity against complex organic pollutants. However, despite the growing use of nickel NPs, their toxicological towards environmental bacteria have not been sufficiently studied. Actinobacteria of the genus Rhodococcus are valuable bioremediation agents degrading a range of harmful and recalcitrant chemicals. Both positive and negative effects of metal ions and NPs on the biodegradation of organic pollutants by Rhodococcus were revealed, however, the mechanisms of such interactions, in addition to direct toxic effects, remain unclear. In the present work, the influence of nickel NPs on the viability, surface topology and nanomechanical properties of Rhodococcus cells have been studied. Bacterial adaptations to high (up to 1.0 g/L) concentrations of nickel NPs during prolonged (24 and 48 h) exposure were detected using combined confocal laser scanning and atomic force microscopy. Incubation with nickel NPs resulted in a 1.25–1.5-fold increase in the relative surface area and roughness, changes in cellular charge and adhesion characteristics, as well as a 2–8-fold decrease in the Young’s modulus of Rhodococcus ruber IEGM 231 cells. Presumably, the treatment of rhodococcal cells with sublethal concentrations (0.01–0.1 g/L) of nickel NPs facilitates the colonization of surfaces, which is important in the production of immobilized biocatalysts based on whole bacterial cells adsorbed on solid carriers. Based on the data obtained, cell surface functionalizing with NPs is possible to enhance adhesive and catalytic properties of bacteria suitable for environmental applications.
Collapse
Affiliation(s)
- Maria S. Kuyukina
- Microbiology and Immunology Department, Perm State University, 614990 Perm, Russia; (G.G.G.); (I.B.I.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, 614081 Perm, Russia
- Correspondence:
| | - Grigorii G. Glebov
- Microbiology and Immunology Department, Perm State University, 614990 Perm, Russia; (G.G.G.); (I.B.I.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, 614081 Perm, Russia
| | - Irena B. Ivshina
- Microbiology and Immunology Department, Perm State University, 614990 Perm, Russia; (G.G.G.); (I.B.I.)
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, 614081 Perm, Russia
| |
Collapse
|
9
|
Abstract
Abstract
In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.
Graphic abstract
Collapse
|
10
|
Gang F, Jiang L, Xiao Y, Zhang J, Sun X. Multi‐functional magnetic hydrogel: Design strategies and applications. NANO SELECT 2021. [DOI: 10.1002/nano.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Fangli Gang
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Yi Xiao
- Department of Biology Xinzhou Teachers University Xinzhou Shanxi 034000 China
| | - Jiwen Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Chemistry & Pharmacy Northwest A&F University Yangling Shaanxi 712100 China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| |
Collapse
|
11
|
Li S, Wei C, Lv Y. Preparation and Application of Magnetic Responsive Materials in Bone Tissue Engineering. Curr Stem Cell Res Ther 2020; 15:428-440. [PMID: 31893995 DOI: 10.2174/1574888x15666200101122505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/01/2019] [Accepted: 12/06/2019] [Indexed: 11/22/2022]
Abstract
At present, many kinds of materials are used for bone tissue engineering, such as polymer materials, metals, etc., which in general have good biocompatibility and mechanical properties. However, these materials cannot be controlled artificially after implantation, which may result in poor repair performance. The appearance of the magnetic response material enables the scaffolds to have the corresponding ability to the external magnetic field. Within the magnetic field, the magnetic response material can achieve the targeted release of the drug, improve the performance of the scaffold, and further have a positive impact on bone formation. This paper first reviewed the preparation methods of magnetic responsive materials such as magnetic nanoparticles, magnetic polymers, magnetic bioceramic materials and magnetic alloys in recent years, and then introduced its main applications in the field of bone tissue engineering, including promoting osteogenic differentiation, targets release, bioimaging, cell patterning, etc. Finally, the mechanism of magnetic response materials to promote bone regeneration was introduced. The combination of magnetic field treatment methods will bring significant progress to regenerative medicine and help to improve the treatment of bone defects and promote bone tissue repair.
Collapse
Affiliation(s)
- Song Li
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, China
| | - Changling Wei
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, Zhao Y. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49:4043-4069. [DOI: 10.1039/d0cs00120a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review comprehensively discusses recent advances in the basic components, controlling methods and especially in the applications of biohybrid robots.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yunru Yu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Fangfu Ye
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
- Beijing National Laboratory for Condensed Matter Physics
| | - Lingyun Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| |
Collapse
|
13
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020. [PMID: 32728669 DOI: 10.1155/2020/7659749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Lin X, Xu B, Zhu H, Liu J, Solovev A, Mei Y. Requirement and Development of Hydrogel Micromotors towards Biomedical Applications. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7659749. [PMID: 32728669 PMCID: PMC7368969 DOI: 10.34133/2020/7659749] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
With controllable size, biocompatibility, porosity, injectability, responsivity, diffusion time, reaction, separation, permeation, and release of molecular species, hydrogel microparticles achieve multiple advantages over bulk hydrogels for specific biomedical procedures. Moreover, so far studies mostly concentrate on local responses of hydrogels to chemical and/or external stimuli, which significantly limit the scope of their applications. Tetherless micromotors are autonomous microdevices capable of converting local chemical energy or the energy of external fields into motive forces for self-propelled or externally powered/controlled motion. If hydrogels can be integrated with micromotors, their applicability can be significantly extended and can lead to fully controllable responsive chemomechanical biomicromachines. However, to achieve these challenging goals, biocompatibility, biodegradability, and motive mechanisms of hydrogel micromotors need to be simultaneously integrated. This review summarizes recent achievements in the field of micromotors and hydrogels and proposes next steps required for the development of hydrogel micromotors, which become increasingly important for in vivo and in vitro bioapplications.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Borui Xu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Hong Zhu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Jinrun Liu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Alexander Solovev
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Yongfeng Mei
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Huang H, Wei Z, Liou J, Zhao W, Xu X. Localization of cells using magnetized patterned thin films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109875. [DOI: 10.1016/j.msec.2019.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 08/31/2018] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
|
16
|
Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.11.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Three-dimensional printing of alginate-gelatin-agar scaffolds using free-form motor assisted microsyringe extrusion system. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1455-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Kiprono SJ, Ullah MW, Yang G. Surface engineering of microbial cells: Strategies and applications. ACTA ACUST UNITED AC 2018. [DOI: 10.30919/es.180330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Kiprono SJ, Ullah MW, Yang G. Encapsulation of E. coli in biomimetic and Fe 3O 4-doped hydrogel: structural and viability analyses. Appl Microbiol Biotechnol 2017; 102:933-944. [PMID: 29170808 DOI: 10.1007/s00253-017-8625-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/24/2023]
Abstract
The current study reports the modification of prokaryotic microorganism through a single-layer technique by using different polyanions/cations and doping with magnetic (Fe3O4) nanoparticles. Briefly, individual Escherichia coli cells were encapsulated through deposition of 1% sodium alginate as first layer followed by depositing precipitate layers of calcium chloride, disodium hydrogen phosphate, and Fe3O4 nanoparticles. Surface and cross sectional analysis of modified E. coli cells by field emission scanning electron microscope (FE-SEM) confirmed the synthesis of varying sizes of artificial shells around the microbial cells while the deposition of Fe3O4 nanoparticles was confirmed by transmission electron microscope (TEM). Thermogravimetric analysis (TGA) showed the deposition of 58 wt% of Fe3O4 nanoparticles on E. coli cell surface. Chemical structure analysis by Fourier transform infrared (FTIR) spectroscopy confirmed the presence of characteristic functional groups of deposited reagents in the hydrogel capsule. Zeta potential analysis of hydrogel capsule showed moderate stability with a surface charge of - 21 mV. Growth and viability analysis by Alamar Blue assay indicated marked increase in the reduction of resazurin blue (> 100%) by the modified E. coli indicating their viability. The movement and control of magnetized E. coli cells were manipulated using external permanent magnetic field as observed with optical microscope images. The surface-modified cells can find potential applications in bioremediation, biodegradation, and catalysis and can be used as biosorbents.
Collapse
Affiliation(s)
- Sabella Jelimo Kiprono
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, 190-50100, Kenya
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guang Yang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China. .,National Engineering Research Centre for Nano-Medicine, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
20
|
|