1
|
Ehrlich H, Bailey E, Wysokowski M, Jesionowski T. Forced Biomineralization: A Review. Biomimetics (Basel) 2021; 6:46. [PMID: 34287234 PMCID: PMC8293141 DOI: 10.3390/biomimetics6030046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 12/31/2022] Open
Abstract
Biologically induced and controlled mineralization of metals promotes the development of protective structures to shield cells from thermal, chemical, and ultraviolet stresses. Metal biomineralization is widely considered to have been relevant for the survival of life in the environmental conditions of ancient terrestrial oceans. Similar behavior is seen among extremophilic biomineralizers today, which have evolved to inhabit a variety of industrial aqueous environments with elevated metal concentrations. As an example of extreme biomineralization, we introduce the category of "forced biomineralization", which we use to refer to the biologically mediated sequestration of dissolved metals and metalloids into minerals. We discuss forced mineralization as it is known to be carried out by a variety of organisms, including polyextremophiles in a range of psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as in environments with very high or toxic metal ion concentrations. While much additional work lies ahead to characterize the various pathways by which these biominerals form, forced biomineralization has been shown to provide insights for the progression of extreme biomimetics, allowing for promising new forays into creating the next generation of composites using organic-templating approaches under biologically extreme laboratory conditions relevant to a wide range of industrial conditions.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
- Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada
- ICUBE-University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Elizabeth Bailey
- Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA;
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
2
|
Stoller MA, Gromowsky M, Rauhauser M, Judah M, Konda A, Jurich CP, Morin SA. Crystallization at droplet interfaces for the fabrication of geometrically programmed synthetic magnetosomes. SOFT MATTER 2020; 16:5819-5826. [PMID: 32324186 DOI: 10.1039/d0sm00410c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological systems demonstrate exquisite three dimensional (3D) control over crystal nucleation and growth using soft micro/nanoenvironments, such as vesicles, for reagent transport and confinement. It remains challenging to mimic such biomineralization processes using synthetic systems. A synthetic mineralization strategy applicable to the synthesis of artificial magnetosomes with programmable magnetic domains is described. This strategy relies on the compartmentalization of precursors in surfactant-stabilized liquid microdroplets which, when contacted, spontaneously form lipid bilayers that support reagent transport and interface-confined magnetite nucleation and growth. The resulting magnetic domains are polarized and thus readily manipulated using magnetic fields or assembled using droplet-droplet interactions. This strategy presents a new, liquid phase procedure for the synthesis of vesicles with geometrically controlled inorganic features that would be difficult to produce otherwise. The artificial magnetosomes demonstrated could find use in, for example, drug/cargo delivery, droplet microfluidics, and formulation science.
Collapse
Affiliation(s)
- Michael A Stoller
- Department of Chemistry, University of Nebraska-Lincoln, Hamilton Hall, Lincoln, NE 68588, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Biomimetic Magnetoliposomes as Oxaliplatin Nanocarriers: In Vitro Study for Potential Application in Colon Cancer. Pharmaceutics 2020; 12:pharmaceutics12060589. [PMID: 32599905 PMCID: PMC7356838 DOI: 10.3390/pharmaceutics12060589] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Current chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC50 compared to that of soluble Oxa. However, their strong interaction with the macrophages revealed toxicity and possibility of aggregation. In this scenario, a further improvement of this nanoassembly was necessary. In the present study, Oxa-BMNPs nanoassemblies were enveloped in phosphatidylcholine unilamellar liposomes (both pegylated and non-pegylated). Our results demonstrate that the addition of both a lipid cover and further pegylation improves the biocompatibility and cellular uptake of the Oxa-BMNPs nanoassemblies without significantly reducing their cytotoxic activity in colon cancer cells. In particular, with the pegylated magnetoliposome nanoformulation (a) hemolysis was reduced from 5% to 2%, being now hematocompatibles, (b) red blood cell agglutination was reduced, (c) toxicity in white blood cells was eliminated. This study represents a truly stepforward in this area as describes the production of one of the very few existing nanoformulations that could be used for a local chemotherapy to treat CRC.
Collapse
|
4
|
Wong JX, Ogura K, Chen S, Rehm BHA. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front Bioeng Biotechnol 2020; 8:156. [PMID: 32195237 PMCID: PMC7064635 DOI: 10.3389/fbioe.2020.00156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymes function as biocatalysts and are extensively exploited in industrial applications. Immobilization of enzymes using support materials has been shown to improve enzyme properties, including stability and functionality in extreme conditions and recyclability in biocatalytic processing. This review focuses on the recent advances utilizing the design space of in vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds. Self-assembly of biologically active enzyme-coated PHA particles is a one-step in vivo production process, which avoids the costly and laborious in vitro chemical cross-linking of purified enzymes to separately produced support materials. The homogeneous orientation of enzymes densely coating PHA particles enhances the accessibility of catalytic sites, improving enzyme function. The PHA particle technology has been developed into a remarkable scaffolding platform for the design of cost-effective designer biocatalysts amenable toward robust industrial bioprocessing. In this review, the PHA particle technology will be compared to other biological supramolecular assembly-based technologies suitable for in vivo enzyme immobilization. Recent progress in the fabrication of biological particulate scaffolds using enzymes of industrial interest will be summarized. Additionally, we outline innovative approaches to overcome limitations of in vivo assembled PHA particles to enable fine-tuned immobilization of multiple enzymes to enhance performance in multi-step cascade reactions, such as those used in continuous flow bioprocessing.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Kampachiro Ogura
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
5
|
Fernández-Castané A, Li H, Thomas ORT, Overton TW. Development of a simple intensified fermentation strategy for growth of Magnetospirillum gryphiswaldense MSR-1: Physiological responses to changing environmental conditions. N Biotechnol 2018; 46:22-30. [PMID: 29864580 PMCID: PMC6109776 DOI: 10.1016/j.nbt.2018.05.1201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/05/2023]
Abstract
Magnetosomes are natural intracellular, membrane-bound, magnetic nanoparticles. Magnetosomes have a variety of clinical and biotechnological applications. Magnetosomes are currently difficult to produce at large scale. We developed a simple, scalable, fermentation strategy for magnetosome production. The methods developed will aid development of magnetosome technologies.
The development of a simple pH-stat fed-batch fermentation strategy for the production of Magnetospirillum gryphiswaldense MSR-1 and magnetosomes (nanoscale magnetic organelles with biotechnological applications) is described. Flow cytometry was exploited as a powerful analytical tool for process development, enabling rapid monitoring of cell morphology, physiology and polyhydroxyalkanoate production. The pH-stat fed-batch growth strategy was developed by varying the concentrations of the carbon source (lactic acid) and the alternative electron acceptor (sodium nitrate) in the feed. Growth conditions were optimized on the basis of biomass concentration, cellular magnetism (indicative of magnetosome production), and intracellular iron concentration. The highest biomass concentration and cellular iron content achieved were an optical density at 565 nm of 15.5 (equivalent to 4.2 g DCW·L−1) and 33.1 mg iron·g−1 DCW, respectively. This study demonstrates the importance of analyzing bacterial physiology during fermentation development and will potentially aid the industrial production of magnetosomes, which can be used in a wide range of biotechnology and healthcare applications.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK; Institute of Microbiology & Infection, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Hong Li
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Owen R T Thomas
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK; Institute of Microbiology & Infection, University of Birmingham, B15 2TT, Birmingham, UK.
| |
Collapse
|
6
|
Perrier DL, Rems L, Boukany PE. Lipid vesicles in pulsed electric fields: Fundamental principles of the membrane response and its biomedical applications. Adv Colloid Interface Sci 2017; 249:248-271. [PMID: 28499600 DOI: 10.1016/j.cis.2017.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/04/2023]
Abstract
The present review focuses on the effects of pulsed electric fields on lipid vesicles ranging from giant unilamellar vesicles (GUVs) to small unilamellar vesicles (SUVs), from both fundamental and applicative perspectives. Lipid vesicles are the most popular model membrane systems for studying biophysical and biological processes in living cells. Furthermore, as vesicles are made from biocompatible and biodegradable materials, they provide a strategy to create safe and functionalized drug delivery systems in health-care applications. Exposure of lipid vesicles to pulsed electric fields is a common physical method to transiently increase the permeability of the lipid membrane. This method, termed electroporation, has shown many advantages for delivering exogenous molecules including drugs and genetic material into vesicles and living cells. In addition, electroporation can be applied to induce fusion between vesicles and/or cells. First, we discuss in detail how research on cell-size GUVs as model cell systems has provided novel insight into the basic mechanisms of cell electroporation and associated phenomena. Afterwards, we continue with a thorough overview how electroporation and electrofusion have been used as versatile methods to manipulate vesicles of all sizes in different biomedical applications. We conclude by summarizing the open questions in the field of electroporation and possible future directions for vesicles in the biomedical field.
Collapse
|
7
|
Ke W, Zhang J, An X, Zhang B. In situ synthesis of fluorescent magnetosomes using an organic membrane as a soft template. NANOSCALE 2017; 9:5408-5412. [PMID: 28426057 DOI: 10.1039/c7nr00542c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel approach was presented for the in situ synthesis of fluorescent magnetosomes by biological mineralization and carbonization processes for the first time. The surface structures, magnetism and fluorescence were studied, and the cytotoxicity tests and fluorescent trace in liposomes were probed. The fluorescent magnetosomes exhibit not only unique fluorescence and ferromagnetic properties but also low toxicity and superior imaging capability.
Collapse
Affiliation(s)
- Wenjing Ke
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | | | | | | |
Collapse
|