1
|
Pontes AP, van der Wal S, Roelofs K, Grobbink A, Creemers LB, Engbersen JFJ, Rip J. A poly(amidoamine)-based polymeric nanoparticle platform for efficient in vivo delivery of mRNA. BIOMATERIALS ADVANCES 2024; 156:213713. [PMID: 38071770 DOI: 10.1016/j.bioadv.2023.213713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/26/2023] [Indexed: 12/27/2023]
Abstract
The successful use of mRNA vaccines enabled and accelerated the development of several new vaccine candidates and therapeutics based on the delivery of mRNA. In this study, we developed bioreducible poly(amidoamine)-based polymeric nanoparticles (PAA PNPs) for the delivery of mRNA with improved transfection efficiency. The polymers were functionalized with chloroquinoline (Q) moieties for improved endosomal escape and further stabilization of the mRNA-polymer construct. Moreover, these PAAQ polymers were covalently assembled around a core of multi-armed ethylenediamine (Mw 800, 2 % w/w) to form a pre-organized polymeric scaffolded PAAQ (ps-PAAQ) as a precursor for the formation of the mRNA-loaded nanoparticles. Transfection of mammalian cell lines with EGFP mRNA loaded into these PNPs showed a favorable effect of the Q incorporation on GFP protein expression. Additionally, these ps-PAAQ NPs were co-formulated with PEG-polymer coatings to shield the positive surface charge for increased stability and better in vivo applicability. The ps-PAAQ NPs coated with PEG-polymer displayed smaller particle size, electroneutral surface charge, and higher thermal stability. Importantly, these nanoparticles with both Q and PEG-polymer coating induced significantly higher luciferase activity in mice muscle than uncoated ps-PAAQ NPs, following intramuscular injection of PNPs loaded with luciferase mRNA. The developed technology is broadly applicable and holds promise for the development of new nucleotide-based vaccines and therapeutics in a range of infectious and chronic diseases.
Collapse
Affiliation(s)
- Adriano P Pontes
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands
| | | | - Karin Roelofs
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands
| | - Anne Grobbink
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands
| | - Laura B Creemers
- Department of Orthopedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Johan F J Engbersen
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands; Technical Medical Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Jaap Rip
- 20Med Therapeutics B.V., Galileiweg 8, 2333 BD Leiden, the Netherlands.
| |
Collapse
|
2
|
Pontes AP, van der Wal S, Ranamalla SR, Roelofs K, Tomuta I, Creemers LB, Rip J. Cell uptake and intracellular trafficking of bioreducible poly(amidoamine) nanoparticles for efficient mRNA translation in chondrocytes. Front Bioeng Biotechnol 2023; 11:1290871. [PMID: 38026902 PMCID: PMC10668025 DOI: 10.3389/fbioe.2023.1290871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Disulfide-containing poly(amidoamine) (PAA) is a cationic and bioreducible polymer, with potential use as a nanocarrier for mRNA delivery in the treatment of several diseases including osteoarthritis (OA). Successful transfection of joint cells with PAA-based nanoparticles (NPs) was shown previously, but cell uptake, endosomal escape and nanoparticle biodegradation were not studied in detail. In this study, C28/I2 human chondrocytes were transfected with NPs co-formulated with a PEG-polymer coating and loaded with EGFP mRNA for confocal imaging of intracellular trafficking and evaluation of transfection efficiency. Compared with uncoated NPs, PEG-coated NPs showed smaller particle size, neutral surface charge, higher colloidal stability and superior transfection efficiency. Furthermore, endosomal entrapment of these PEG-coated NPs decreased over time and mRNA release could be visualized both in vitro and in live cells. Importantly, cell treatment with modulators of the intracellular reducing environment showed that glutathione (GSH) concentrations affect translation of the mRNA payload. Finally, we applied a D-optimal experimental design to test different polymer-to-RNA loading ratios and dosages, thus obtaining an optimal formulation with up to ≈80% of GFP-positive cells and without toxic effects. Together, the biocompatibility and high transfection efficiency of this system may be a promising tool for intra-articular delivery of therapeutical mRNA in OA treatment.
Collapse
Affiliation(s)
| | | | - Saketh R. Ranamalla
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | | | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Rip
- 20Med Therapeutics BV, Leiden, Netherlands
| |
Collapse
|
3
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
4
|
Wang Z, Sun J, Li M, Luo T, Shen Y, Cao A, Sheng R. Natural steroid-based cationic copolymers cholesterol/diosgenin- r-PDMAEMAs and their pDNA nanoplexes: impact of steroid structures and hydrophobic/hydrophilic ratios on pDNA delivery. RSC Adv 2021; 11:19450-19460. [PMID: 35479247 PMCID: PMC9033666 DOI: 10.1039/d1ra00223f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Using natural-based lipids to construct biocompatible, controllable and efficient nanocarriers and elucidating their structure-function relationships, was regarded as an important area for creating sustainable biomaterials. Herein, we utilized two natural steroids: cholesterol and diosgenin (bearing different hydrophobic tails) as the building blocks, to synthesize a series of natural steroid-based cationic random copolymers PMA6Chol-r-PDMAEMA and PMA6Dios-r-PDMAEMA via RAFT polymerization. The results demonstrated that the steroid-r-PDMAEMA copolymers could efficiently bind pDNA (N/P < 3.0) and then form near-spherical shape (142-449 nm) and positively-charged (+11.5 to +19.6 mV) nanoparticles. The in vitro cytotoxicity and gene transfection efficiency greatly depend on the steroid hydrophobic tail structures and steroid/PDMAEMA block ratios. Optimum transfection efficiency of the (Chol-P1/pDNA and Dios-P3/pDNA) nanoplexes could reach to 18.1-31.2% of the PEI-25K/pDNA complex. Moreover, all of the steroid-r-PDMAEMA/Cy3-pDNA nanoplexes have an obvious "lysosome localization" effect, indicating the steroid structures do not remarkably influence the intracellular localization behaviors of these nanoplexes.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jingjing Sun
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mingrui Li
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ting Luo
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yulin Shen
- School of Material Engineering, Jinling Institute of Technology Nanjing 211169 China
| | - Amin Cao
- CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ruilong Sheng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University Shanghai 200072 China.,CAS Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira Campus da Penteada Funchal Madeira 9000-390 Portugal
| |
Collapse
|
5
|
Chen G, Wang Y, Ullah A, Huai Y, Xu Y. The effects of fluoroalkyl chain length and density on siRNA delivery of bioreducible poly(amido amine)s. Eur J Pharm Sci 2020; 152:105433. [PMID: 32590121 DOI: 10.1016/j.ejps.2020.105433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 02/05/2023]
Abstract
Fluorination is an attractive strategy for the improvement of transfection efficiency of nucleic acid delivery vectors. Bioreducible poly(amido amine)s (bPAAs) are an important class of biomaterials exhibited to effectively deliver multiple nucleic acids. However, still, the effects of fluoroalkyl chain length and density of bPAA on siRNA delivery are unveiled. Here, we synthesized bPAAs and grafted with different chain lengths and densities of fluorocarbon compounds. Furthermore, we prepared a library of complexes of fluorinated bPAA and siRNA, and investigated the effects of fluorination on the siRNA delivery in vitro and in vivo. We found that all the synthesized bPAAs readily formed complexes with siRNA and the fluorinated complexes considerably achieved improved gene silencing efficacies both in vitro and in vivo. Dramatically, the gene silencing efficacy was increased with increasing fluorine contents. Heptafluorobutyric anhydride (HF) modified bPAAs achieved better gene silencing efficacy when compared with bPAAs fluorinated by trifluoroacetic anhydride (TF) and pentafluoropropionic anhydride (PF) providing the evidence for choosing of best one among fluorocarbon compounds. In addition, a combination of fluorination with bioreducibility enables efficient and safe siRNA delivery.
Collapse
Affiliation(s)
- Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Yixin Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Aftab Ullah
- Shantou University Medical College, Shantou 515041, China
| | - Yuying Huai
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuehua Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Duo X, Bai L, Wang J, Ji H, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. CAGW and TAT‐NLS peptides functionalized multitargeting gene delivery system with high transfection efficiency. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinghong Duo
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- School of Chemistry and Chemical EngineeringQinghai University for Nationalities Xining Qinghai China
| | - Lingchuang Bai
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jun Wang
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Hao Ji
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jintang Guo
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Xiangkui Ren
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| | - Changcan Shi
- School of Ophthalmology & OptometryEye Hospital, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang China
- CNITECH, CASWenzhou Institute of Biomaterials and Engineering Wenzhou Zhejiang China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated HospitalLogistics University of People's Armed Police Force Tianjin China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of Chinese People's Armed Police Force Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| |
Collapse
|
7
|
Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids Surf B Biointerfaces 2019; 175:10-17. [DOI: 10.1016/j.colsurfb.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/24/2018] [Accepted: 11/19/2018] [Indexed: 01/31/2023]
|
8
|
Abou Matar T, Karam P. The Role of Hydrophobicity in the Cellular Uptake of Negatively Charged Macromolecules. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/09/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Tamara Abou Matar
- Department of Chemistry; American University of Beirut; P.O. Box 11-0236 Beirut Lebanon
| | - Pierre Karam
- Department of Chemistry; American University of Beirut; P.O. Box 11-0236 Beirut Lebanon
| |
Collapse
|
9
|
Sun Y, Liu H, Cheng L, Zhu S, Cai C, Yang T, Yang L, Ding P. Thiol Michael addition reaction: a facile tool for introducing peptides into polymer-based gene delivery systems. POLYM INT 2017. [DOI: 10.1002/pi.5490] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yanping Sun
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Hui Liu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Lin Cheng
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Shimeng Zhu
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Cuifang Cai
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences; Husson University; Bangor ME USA
| | - Li Yang
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Pingtian Ding
- School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|