1
|
Thi PL, Tu QA, Oh DH, Park KD. Glucose Oxidase-Coated Calcium Peroxide Nanoparticles as an Innovative Catalyst for In Situ H 2O 2-Releasing Hydrogels. Macromol Biosci 2024:e2400268. [PMID: 39207777 DOI: 10.1002/mabi.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
In situ forming and hydrogen peroxide (H2O2)-releasing hydrogels have been considered as attractive matrices for various biomedical applications. Particularly, horseradish peroxidase (HRP)-catalyzed crosslinking reaction serves efficient method to create in situ forming hydrogels due to its advantageous features, such as mild reaction conditions, rapid gelation rate, tunable mechanical strength, and excellent biocompatibility. Herein, a novel HRP-crosslinked hydrogel system is reported that can produce H2O2 in situ for long-term applications, using glucose oxidase-coated calcium peroxide nanoparticles (CaO2@GOx NPs). In this system, CaO2 gradually produced H2O2 to support the HRP-mediated hydrogelation, while GOx further catalyzed the oxidation of glucose for in situ H2O2 generation. As the hydrogel is formed rapidly is expected and the H2O2 release behavior is prolonged up to 10 days. Interestingly, hydrogels formed by HRP/CaO2@GOx-mediated crosslinking reaction provided a favorable 3D microenvironment to support the viability and proliferation of fibroblasts, compared to that of hydrogels formed by either HRP/H2O2 or HRP/CaO2/GOx-mediated crosslinking reaction. Furthermore, HRP/CaO2@GOx-crosslinked hydrogel enhanced the angiogenic activities of endothelial cells, which is demonstrated by the in vitro tube formation test and in ovo chicken chorioallantoic membrane model. Therefore, HRP/CaO2@GOx-catalyzed hydrogels is suggested as potential in situ H2O2-releasing materials for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh, 7000000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh, 7000000, Vietnam
| | - Quang Anh Tu
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon, 16499, Republic of Korea
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon, 16499, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 5 Woncheon, Yeongtong, Suwon, 16499, Republic of Korea
| |
Collapse
|
2
|
Freeform 3D Bioprinting Involving Ink Gelation by Cascade Reaction of Oxidase and Peroxidase: A Feasibility Study Using Hyaluronic Acid-Based Ink. Biomolecules 2021; 11:biom11121908. [PMID: 34944552 PMCID: PMC8699251 DOI: 10.3390/biom11121908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Freeform bioprinting, realized by extruding ink-containing cells into supporting materials to provide physical support during printing, has fostered significant advances toward the fabrication of cell-laden soft hydrogel constructs with desired spatial control. For further advancement of freeform bioprinting, we aimed to propose a method in which the ink embedded in supporting materials gelate through a cytocompatible and rapid cascade reaction between oxidase and peroxidase. To demonstrate the feasibility of the proposed method, we extruded ink containing choline, horseradish peroxidase (HRP), and a hyaluronic acid derivative, cross-linkable by HRP-catalyzed reaction, into a supporting material containing choline oxidase and successfully obtained three-dimensional hyaluronic acid-based hydrogel constructs with good shape fidelity to blueprints. Cytocompatibility of the bioprinting method was confirmed by the comparable growth of mouse fibroblast cells, released from the printed hydrogels through degradation on cell culture dishes, with those not exposed to the printing process, and considering more than 85% viability of the enclosed cells during 10 days of culture. Owing to the presence of derivatives of the various biocompatible polymers that are cross-linkable through HRP-mediated cross-linking, our results demonstrate that the novel 3D bioprinting method has great potential in tissue engineering applications.
Collapse
|
3
|
Choi DH, Lee KE, Oh SY, Lee SM, Jo BS, Lee JY, Park JC, Park YJ, Park KD, Jo I, Park YS. Tonsil-derived mesenchymal stem cells incorporated in reactive oxygen species-releasing hydrogel promote bone formation by increasing the translocation of cell surface GRP78. Biomaterials 2021; 278:121156. [PMID: 34597900 DOI: 10.1016/j.biomaterials.2021.121156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Controlling the senescence of mesenchymal stem cells (MSCs) is essential for improving the efficacy of MSC-based therapies. Here, a model of MSC senescence was established by replicative subculture in tonsil-derived MSCs (TMSCs) using senescence-associated β-galactosidase, telomere-length related genes, stemness, and mitochondrial metabolism. Using transcriptomic and proteomic analyses, we identified glucose-regulated protein 78 (GRP78) as a unique MSC senescence marker. With increasing cell passage number, GRP78 gradually translocated from the cell surface and cytosol to the (peri)nuclear region of TMSCs. A gelatin-based hydrogel releasing a sustained, low level of reactive oxygen species (ROS-hydrogel) was used to improve TMSC quiescence and self-renewal. TMSCs expressing cell surface-specific GRP78 (csGRP78+), collected by magnetic sorting, showed better stem cell function and higher mitochondrial metabolism than unsorted cells. Implantation of csGRP78+ cells embedded in ROS-hydrogel in rats with calvarial defects resulted in increased bone regeneration. Thus, csGRP78 is a promising biomarker of senescent TMSCs, and the combined use of csGRP78+ cells and ROS-hydrogel improved the regenerative capacity of TMSCs by regulating GRP78 translocation.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Si Min Lee
- Department of Molecular Science and Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Beom Soo Jo
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jue-Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jong-Chul Park
- Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoon Jeong Park
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), #404 Biomaterial Research building, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| | - Yoon Shin Park
- Department of Biological Sciences and Biotechnology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
4
|
Blake C, Massey O, Boyd-Moss M, Firipis K, Rifai A, Franks S, Quigley A, Kapsa R, Nisbet DR, Williams RJ. Replace and repair: Biomimetic bioprinting for effective muscle engineering. APL Bioeng 2021; 5:031502. [PMID: 34258499 PMCID: PMC8270648 DOI: 10.1063/5.0040764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The debilitating effects of muscle damage, either through ischemic injury or volumetric muscle loss (VML), can have significant impacts on patients, and yet there are few effective treatments. This challenge arises when function is degraded due to significant amounts of skeletal muscle loss, beyond the regenerative ability of endogenous repair mechanisms. Currently available surgical interventions for VML are quite invasive and cannot typically restore function adequately. In response to this, many new bioengineering studies implicate 3D bioprinting as a viable option. Bioprinting for VML repair includes three distinct phases: printing and seeding, growth and maturation, and implantation and application. Although this 3D bioprinting technology has existed for several decades, the advent of more advanced and novel printing techniques has brought us closer to clinical applications. Recent studies have overcome previous limitations in diffusion distance with novel microchannel construct architectures and improved myotubule alignment with highly biomimetic nanostructures. These structures may also enhance angiogenic and nervous ingrowth post-implantation, though further research to improve these parameters has been limited. Inclusion of neural cells has also shown to improve myoblast maturation and development of neuromuscular junctions, bringing us one step closer to functional, implantable skeletal muscle constructs. Given the current state of skeletal muscle 3D bioprinting, the most pressing future avenues of research include furthering our understanding of the physical and biochemical mechanisms of myotube development and expanding our control over macroscopic and microscopic construct structures. Further to this, current investigation needs to be expanded from immunocompromised rodent and murine myoblast models to more clinically applicable human cell lines as we move closer to viable therapeutic implementation.
Collapse
Affiliation(s)
- Cooper Blake
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Oliver Massey
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | | | | | | | - Stephanie Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
5
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Kang MS, Kang JI, Le Thi P, Park KM, Hong SW, Choi YS, Han DW, Park KD. Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous Myogenic Differentiation. ACS Macro Lett 2021; 10:426-432. [PMID: 35549236 DOI: 10.1021/acsmacrolett.0c00845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Three-dimensional (3D) bioprinting has attracted considerable attention for producing 3D engineered cellular microenvironments that replicate complex and sophisticated native extracellular matrices (ECM) as well as the spatiotemporal gradients of numerous physicochemical and biological cues. Although various hydrogel-based bioinks have been reported, the development of advanced bioink materials that can reproduce the complexity of ECM accurately and mimic the intrinsic property of laden cells is still a challenge. This paper reports 3D printable bioinks composed of phenol-rich gelatin (GHPA) and graphene oxide (GO) as a component for a myogenesis-inducing material, which can form a hydrogel network in situ by a dual enzyme-mediated cross-linking reaction. The in situ curable GO/GHPA hydrogel can be utilized successfully as 3D-printable bioinks to provide suitable cellular microenvironments with facilitated myogenic differentiation of C2C12 skeletal myoblasts. Overall, we suggest that functional bioinks may be useful in muscle tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Western Australia 6009, Australia
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Arkenberg MR, Nguyen HD, Lin CC. Recent advances in bio-orthogonal and dynamic crosslinking of biomimetic hydrogels. J Mater Chem B 2020; 8:7835-7855. [PMID: 32692329 PMCID: PMC7574327 DOI: 10.1039/d0tb01429j] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, dynamic, 'click' hydrogels have been applied in numerous biomedical applications. Owing to the mild, cytocompatible, and highly specific reaction kinetics, a multitude of orthogonal handles have been developed for fabricating dynamic hydrogels to facilitate '4D' cell culture. The high degree of tunability in crosslinking reactions of orthogonal 'click' chemistry has enabled a bottom-up approach to install specific biomimicry in an artificial extracellular matrix. In addition to click chemistry, highly specific enzymatic reactions are also increasingly used for network crosslinking and for spatiotemporal control of hydrogel properties. On the other hand, covalent adaptable chemistry has been used to recapitulate the viscoelastic component of biological tissues and for formulating self-healing and shear-thinning hydrogels. The common feature of these three classes of chemistry (i.e., orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry) is that they can be carried out under ambient and aqueous conditions, a prerequisite for maintaining cell viability for in situ cell encapsulation and post-gelation modification of network properties. Due to their orthogonality, different chemistries can also be applied sequentially to provide additional biochemical and mechanical control to guide cell behavior. Herein, we review recent advances in the use of orthogonal click chemistry, enzymatic reactions, and covalent adaptable chemistry for the development of dynamically tunable and biomimetic hydrogels.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
8
|
Gao F, Li J, Wang L, Zhang D, Zhang J, Guan F, Yao M. Dual-enzymatically crosslinked hyaluronic acid hydrogel as a long-time 3D stem cell culture system. ACTA ACUST UNITED AC 2020; 15:045013. [PMID: 31995791 DOI: 10.1088/1748-605x/ab712e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stem cell-based tissue engineering shows enormous potential for regenerative medicine. Three-dimensional (3D) stem cell culture is the most basic aspect of tissue engineering. However, achievement of a perfect scaffold for highly efficient 3D cell culture is currently still limited. Herein, a new hyaluronic acid hydrogel dual-enzymatically crosslinked by horseradish peroxidase and choline oxidase is developed as a 3D stem cell culture system. This hydrogel possesses superior stability over two months, controllable biodegradability with hyaluronidases, a high swelling ratio exceeding 6000%, and excellent cytocompatibility in vitro and biocompatibility in vivo. More importantly, a long-time and highly cellular activity 3D culture of bone marrow-derived mesenchymal stem cells was achieved in vitro over 20 days. All these encouraging results highlight the great potential of this new hydrogel for 3D culture and tissue engineering.
Collapse
Affiliation(s)
- Feng Gao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Le Thi P, Lee Y, Tran DL, Hoang Thi TT, Park KD. Horseradish peroxidase-catalyzed hydrogelation of fish gelatin with tunable mechanical properties and biocompatibility. J Biomater Appl 2020; 34:1216-1226. [DOI: 10.1177/0885328219899787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Dieu Linh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Thi PL, Lee Y, Tran DL, Hoang Thi TT, Park KM, Park KD. Calcium peroxide-mediated in situ formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. J Mater Chem B 2020; 8:11033-11043. [DOI: 10.1039/d0tb02119a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CaO2 catalyzes the formation of in situ hydrogels with multifunctional properties through its decomposition into H2O2, O2, and Ca2+ ions.
Collapse
Affiliation(s)
- Phuong Le Thi
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| | - Dieu Linh Tran
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| | - Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group
- Faculty of Applied Sciences
- Ton Duc Thang University
- Ho Chi Minh City 700000
- Vietnam
| | - Kyung Min Park
- Division of Bioengineering
- College of Life Sciences and Bioengineering
- Incheon National University
- Incheon 22012
- Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology
- Ajou University
- Yeongtong
- Republic of Korea
| |
Collapse
|
11
|
Wang L, Li J, Zhang D, Ma S, Zhang J, Gao F, Guan F, Yao M. Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. RSC Adv 2020; 10:2870-2876. [PMID: 35496102 PMCID: PMC9048911 DOI: 10.1039/c9ra09531d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, in situ formed injectable hydrogels have shown great potential in biomedical applications as therapeutic implants or carriers in tissue repair and regeneration. They can seal or fill the damaged tissue to function as cell/drug delivery vehicle perfectly through a minimally invasive surgical procedure. In this study, hyaluronic acid (HA) is functionalized with tyramine to produce an injectable hydrogel dual-enzymatically crosslinked by horseradish peroxidase (HRP) and galactose oxidase (GalOX). This new tyramine-modified HA (HT) hydrogel exhibited good injectability, favorable cytocompatibility to mice bone marrow mesenchymal stem cells (BMSCs), and low inflammatory response verified by cytotoxicity assay in vitro and an in situ subcutaneous injection study in vivo. In addition, the gelation time, swelling behavior, and degradation rate of the HT hydrogel could be adjusted through varying the concentrations of HT and GalOX in a certain range. These encouraging results suggest that such biocompatible HT hydrogels might have potential application in three-dimensional stem cell culture and tissue engineering. A new hyaluronic acid hydrogel dual-enzymatically cross-linked by HRP and GalOX and application for three-dimensional stem cell culture and tissue engineering.![]()
Collapse
Affiliation(s)
- Luyu Wang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jinrui Li
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Dan Zhang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Shanshan Ma
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Junni Zhang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Feng Gao
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Fangxia Guan
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Minghao Yao
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
12
|
Yao M, Zhang J, Gao F, Chen Y, Ma S, Zhang K, Liu H, Guan F. New BMSC-Laden Gelatin Hydrogel Formed in Situ by Dual-Enzymatic Cross-Linking Accelerates Dermal Wound Healing. ACS OMEGA 2019; 4:8334-8340. [PMID: 31459921 PMCID: PMC6648540 DOI: 10.1021/acsomega.9b00878] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 04/30/2019] [Indexed: 05/30/2023]
Abstract
In situ forming hydrogel shows enormous potential as a therapeutic implant or carrier in tissue repair and regeneration. It can perfectly seal or fill the defective tissue, consequently functioning as a cell/drug delivery vehicle. In this contribution, a new gelatin hydrogel with dual-enzymatic cross-linking of horseradish peroxidase (HRP) and galactose oxidase (GalOx) was developed, and the therapeutic effect of this hydrogel encapsulated with bone mesenchymal stem cells (BMSC) in dermal wound healing was investigated. This hydrogel possesses a quick gelation process within 5 min, a high water content, and a uniform three-dimensional (3D) porous network. The 3D cell culture study indicated that gelatin hydrogel matrix of HRP(5U):GalOx(1U) or HRP(2U):GalOx(1U) could provide a friendly 3D microenvironment for supporting the survival, proliferation, and spread of mouse bone mesenchymal stem cells (BMSC) with negligible cytotoxicity. Hematoxylin and eosin staining test suggested that this hydrogel has superior histocompatibility and minimized immune response in vivo. Furthermore, wound-healing studies on a C57 mouse model of excised wound demonstrated that BMSC-laden gelatin hydrogel could significantly accelerate the wound closure as compared to other groups. These data suggest that this dual-enzymatically cross-linked gelatin hydrogel loaded with BMSC has a great potential in wound healing and other tissue-regeneration applications.
Collapse
Affiliation(s)
| | | | - Feng Gao
- School of Life
Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Yihao Chen
- School of Life
Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Shanshan Ma
- School of Life
Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Kun Zhang
- School of Life
Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Hongtao Liu
- School of Life
Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| | - Fangxia Guan
- School of Life
Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
13
|
Nguyen HD, Liu HY, Hudson BN, Lin CC. Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels. ACS Biomater Sci Eng 2019; 5:1247-1256. [PMID: 33304998 PMCID: PMC7725231 DOI: 10.1021/acsbiomaterials.8b01607] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by the enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ crosslinking of macromers containing hydroxyl-phenol groups. The use of HRP on initiating thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the crosslinking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) were used as crosslinkers for forming enzymatically and orthogonally polymerized hydrogels. For HRP-initiated PEG-peptide hydrogel crosslinking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide crosslinkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine crosslinks following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary crosslinking, which dynamically increases hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels provide excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new crosslinking mechanism for preparing modularly and dynamically crosslinked hydrogels.
Collapse
Affiliation(s)
- Han D. Nguyen
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Hung-Yi Liu
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Britney N. Hudson
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Yao M, Gao F, Xu R, Zhang J, Chen Y, Guan F. A dual-enzymatically cross-linked injectable gelatin hydrogel loaded with BMSC improves neurological function recovery of traumatic brain injury in rats. Biomater Sci 2019; 7:4088-4098. [DOI: 10.1039/c9bm00749k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BMSC-laden gelatin hydrogels dual-enzymatically cross-linked by GOX and HRP could significantly promote the neurological function recovery of TBI in rats.
Collapse
Affiliation(s)
- Minghao Yao
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
- Center of Stem Cell and Regenerative Medicine
| | - Feng Gao
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Ru Xu
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Junni Zhang
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yihao Chen
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Fangxia Guan
- School of Life Science
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
- Center of Stem Cell and Regenerative Medicine
| |
Collapse
|
15
|
Hyperbaric oxygen-generating hydrogels. Biomaterials 2018; 182:234-244. [DOI: 10.1016/j.biomaterials.2018.08.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
|
16
|
Lee Y, Son JY, Kang JI, Park KM, Park KD. Hydrogen Peroxide-Releasing Hydrogels for Enhanced Endothelial Cell Activities and Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18372-18379. [PMID: 29722526 DOI: 10.1021/acsami.8b04522] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) have been implicated as a critical modulator for various therapeutic applications such as treatment of vascular disorders, wound healing, and cancer treatment. Specifically, growing evidence has recently demonstrated that transient or low levels of hydrogen peroxide (H2O2) facilitates tissue regeneration and wound repair through acute oxidative stress that can evaluate intracellular ROS levels in cells or tissues. Herein, we report a gelatin-based H2O2-releasing hydrogel formed by dual enzyme-mediated reaction using horseradish peroxidase and glucose oxidase (GO x). The release behavior of H2O2 from the hydrogel matrices can be precisely controlled by varying the GO x concentrations. We demonstrate that H2O2-releasing hydrogels with the optimal condition increase transient upregulation of intracellular ROS levels in the endothelial cells (ECs), enhance proliferative activities of ECs in vitro, and facilitate neovascularization in ovo. We suggest that our H2O2-releasing hydrogels hold great potential as an injectable and dynamic matrix for the treatment of vascular disorders as well as in tissue regenerative medicine.
Collapse
Affiliation(s)
- Yunki Lee
- Department of Molecular Science and Technology , Ajou University , 5 Woncheon , Yeongtong, Suwon 16499 , Republic of Korea
| | - Joo Young Son
- Department of Molecular Science and Technology , Ajou University , 5 Woncheon , Yeongtong, Suwon 16499 , Republic of Korea
| | - Jeon Il Kang
- Department of Bioengineering and Nano-bioengineering, College of Life Sciences and Bioengineering , Incheon National University , 119 Academy-ro , Yeonsu-gu, Incheon 22012 , Republic of Korea
| | - Kyung Min Park
- Department of Bioengineering and Nano-bioengineering, College of Life Sciences and Bioengineering , Incheon National University , 119 Academy-ro , Yeonsu-gu, Incheon 22012 , Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology , Ajou University , 5 Woncheon , Yeongtong, Suwon 16499 , Republic of Korea
| |
Collapse
|
17
|
|
18
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomater 2018; 67:66-78. [PMID: 29269330 DOI: 10.1016/j.actbio.2017.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule with many critical biological functions that depend on its concentration. At high levels, NO provides broad-spectrum antibacterial effects through both its pathogen inhibition and killing abilities. However, its short half-life has been a great challenge to its clinical application in pharmaceutical forms. In this study, we incorporated the NO donor S-nitrosothiolated gelatin (GelSNO) into injectable gelatin-based hydrogels (GHs) to controllably release NO. Under catalysis by horseradish peroxidase, H2O2 oxidizes phenol moieties functionalized on gelatin to quickly form phenol-phenol crosslinks that encapsulate GelSNO. Through thermal, visible light, and oxidizing agent-driven mechanisms, NO is released from the GH/GelSNO hydrogels. By varying the GelSNO concentration, the release of NO was controllable in a wide range, 0.054-2.050 μmol/mL, for up to 14 days. In addition, NO release was fine-tunable as a function of H2O2 concentration. Notably, the in situ formation of peroxynitrite (ONOO-) that produces potent antibacterial effects originated from H2O2 residues and nitrous acid formed by NO and oxygen in aqueous solution. The Kirby-Bauer method indicated that there was an inhibition zone against both Escherichia coli and Staphylococcus aureus incubated with GH/GelSNO hydrogels. The AlarmaBlue assay showed that E. coli and S. aureus were completely killed at NO concentrations of 0.39 and 0.58 μmol/mL. Cytotoxicity tests of GH/GelSNO hydrogels on human dermal fibroblasts at the indicated bactericidal NO concentrations induced no cell toxicity. In summary, GH/GelSNO hydrogels may provide a new platform for topical delivery of NO in treating wound infections and for various biomedical applications. STATEMENT OF SIGNIFICANCE NO is an effective antibacterial agent even in cases of antibiotic-resistant bacteria. Moreover, its intermediate, peroxynitrite, has been reported to have a much higher ability to kill bacteria. In this study, we utilized injectable GH/GelSNO hydrogels formed by HRP/H2O2 reaction not only to control NO release but also to generate peroxynitrite in situ from released NO and H2O2 residues. The GH/GelSNO hydrogels showed significant antibacterial ability on both gram-positive and negative bacteria, while no cytotoxicity was induced on human dermal fibroblasts. In addition, their tunable chemico-physical properties and controllable NO release within a wide range but narrow scale will make the hydrogels useful in various biomedical applications.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
19
|
Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, Ai J. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci 2018; 6:1286-1298. [DOI: 10.1039/c8bm00056e] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hydrogels catalyzed by horseradish peroxidase (HRP) serve as an efficient and effective platform for biomedical applications due to their mild reaction conditions for cells, fast and adjustable gelation rate in physiological conditions, and an abundance of substrates as water-soluble biocompatible polymers.
Collapse
Affiliation(s)
- Mehdi Khanmohammadi
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Mahsa Borzouyan Dastjerdi
- Institute of Medical Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
| | - Arman Ai
- School of Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Akbar Ahmadi
- Department of Neuroscience
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Iran
| | - Arash Godarzi
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences
- School of Advanced Technologies in Medicine
- Tehran University of Medical Sciences
- Tehran
- Iran
| |
Collapse
|
20
|
Hoang Thi TT, Lee Y, Ryu SB, Nguyen DH, Park KD. Enhanced tissue adhesiveness of injectable gelatin hydrogels through dual catalytic activity of horseradish peroxidase. Biopolymers 2017; 109. [DOI: 10.1002/bip.23077] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 10/13/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Thai Thanh Hoang Thi
- Department of Molecular Science and Technology; Ajou University; Suwon Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology; Ajou University; Suwon Republic of Korea
| | - Seung Bae Ryu
- Department of Molecular Science and Technology; Ajou University; Suwon Republic of Korea
| | - Dai Hai Nguyen
- Department of Biomaterials and Bioengineering; Institute of Applied Materials Science, Vietnam Academy of Science and Technology; Ho Chi Minh City Vietnam
- Department of Chemistry; Graduate University of Science and Technology, Vietnam Academy of Science and Technology; Hanoi Vietnam
| | - Ki Dong Park
- Department of Molecular Science and Technology; Ajou University; Suwon Republic of Korea
| |
Collapse
|