1
|
Fang G, Ho BX, Xu H, Gong C, Qiao Z, Liao Y, Zhu S, Lu H, Nie N, Zhou T, Kim M, Huang C, Soh BS, Chen YC. Compressible Hollow Microlasers in Organoids for High-Throughput and Real-Time Mechanical Screening. ACS NANO 2024. [PMID: 39214618 DOI: 10.1021/acsnano.4c08886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mechanical stress within organoids is a pivotal indicator in disease modeling and pharmacokinetics, yet current tools lack the ability to rapidly and dynamically screen these mechanics. Here, we introduce biocompatible and compressible hollow microlasers that realize all-optical assessment of cellular stress within organoids. The laser spectroscopy yields identification of cellular deformation at the nanometer scale, corresponding to tens of pascals stress sensitivity. The compressibility enables the investigation of the isotropic component, which is the fundamental mechanics of multicellular models. By integrating with a microwell array, we demonstrate the high-throughput screening of mechanical cues in tumoroids, establishing a platform for mechano-responsive drug screening. Furthermore, we showcase the monitoring and mapping of dynamic contractile stress within human embryonic stem cell-derived cardiac organoids, revealing the internal mechanical inhomogeneity within a single organoid. This method eliminates time-consuming scanning and sample damage, providing insights into organoid mechanobiology.
Collapse
Affiliation(s)
- Guocheng Fang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Beatrice Xuan Ho
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Hongmei Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chaoyang Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhen Qiao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yikai Liao
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Song Zhu
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hongxu Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Biomaterials and Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Ningyuan Nie
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tian Zhou
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Munho Kim
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Boon Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117543, Singapore
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
2
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
3
|
Lim YGJ, Low HYJ, Loo SCJ. Synthesis of Polymeric Janus Superstructures via a Facile Synthesis Method. Macromol Rapid Commun 2020; 41:e2000140. [PMID: 32449578 DOI: 10.1002/marc.202000140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Polymeric Janus particles can be exploited for a myriad of applications. Through the understanding of interfacial tensions, theragnostic agents such as drugs or nanomaterials can be successfully encapsulated into Janus particles without losing their anisotropic structure. In this work, it is reported that how Janus superstructures, as a further extension of the Janus morphology, can be obtained by blending other synthesis parameters into the solvent emulsion process, while adhering to the requirements of the Harkin's spreading coefficient (HSC) theory. Designing such unique structures for drug delivery can provide a broader range of possibilities and applications beyond conventional Janus particles.
Collapse
Affiliation(s)
- Yi Guang Jerome Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Ying Jessalyn Low
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.,Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Baek JS, Choo CC, Tan NS, Loo SCJ. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids. Oncotarget 2017; 8:80841-80852. [PMID: 29113348 PMCID: PMC5655243 DOI: 10.18632/oncotarget.20591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D, L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
Collapse
Affiliation(s)
- Jong-Suep Baek
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Chee Chong Choo
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 639798, Singapore.,Institute of Molecular Cell Biology, Proteos, Agency for Science Technology and Research, 138673, Singapore.,KK Research Centre, KK Women's and Children Hospital, 229899, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.,Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| |
Collapse
|