1
|
Capelôa L, Schwiertz D, Barz M. Facile Synthesis of AA'B- and ABC-type Polypept(o)ide Miktoarm Star Polymers Utilizing Polysarcosine End Group Functionalization for Core Introduction. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
2
|
Ma A, Yu X, Liao M, Liu W, Xuan S, Zhang Z. Research Progress in Polypeptoids Prepared by Controlled Ring-Opening Polymerizations. Macromol Rapid Commun 2023; 44:e2200301. [PMID: 35748135 DOI: 10.1002/marc.202200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Indexed: 01/11/2023]
Abstract
Polypeptoids, structural mimics of polypeptides, have attracted considerable attention due to their biocompatibility, proteolytic stability, thermal processability, good solubility, synthetic accessibility, and structural diversity. Polypeptoids have emerged as an interesting material in both polymer science and biological field. This review primarily discusses the research progress of polypeptoids prepared by controlled ring-opening polymerizations in the past decade, including synthetic strategies of monomers, polymerizations by different initiators, postfunctionalization, fundamental properties, crystallization-driven self-assembly, and potential biological applications.
Collapse
Affiliation(s)
- Anyao Ma
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinyan Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mingzhen Liao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wenxiao Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sunting Xuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Panchal SS, Vasava DV. Fabricating approaches for synthesis of miktoarm star-shaped polymers having tailored biodegradability. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1981319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Siddhi S. Panchal
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Dilip V. Vasava
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
4
|
Zheng B, Bai T, Tao X, Ling J. An Inspection into Multifarious Ways to Synthesize Poly(Amino Acid)s. Macromol Rapid Commun 2021; 42:e2100453. [PMID: 34562289 DOI: 10.1002/marc.202100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Poly(α-amino acid)s (PAAs) attract growing attention due to their essential role in the application as biomaterials. To synthesize PAAs with desired structures and properties, scientists have developed various synthetic techniques with respective advantages. Here, different approaches to preparing PAAs are inspected. Basic features and recent progresses of these methods are summarized, including polymerizations of amino acid N-carboxyanhydrides (NCAs), amino acid N-thiocarboxyanhydrides (NTAs), and N-phenoxycarbonyl amino acids (NPCs), as well as other synthetic routes. NCA is the most classical monomer to prepare PAAs with high molecular weights (MWs). NTA polymerizations are promising alternative pathways to produce PAAs, which can tolerate nucleophiles including alcohols, mercaptans, carboxyl acids, and water. By various techniques including choosing appropriate solvents or using organic acids as promoters, NTAs polymerize to produce polypeptoids and polypeptides with narrow dispersities and designed MWs up to 55.0 and 57.0 kg mol-1 , respectively. NPC polymerizations are phosgene-free ways to synthesize polypeptides and polypeptoids. For the future prospects, detail investigations into polymerization mechanisms of NTA and NPC are expected. The synthesis of PAAs with designed topologies and assembly structures is another intriguing topic. The advantages and unsettled problems in various synthetic ways are discussed for readers to choose appropriate approaches for PAAs.
Collapse
Affiliation(s)
- Botuo Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Fujian Key Laboratory of Polymer Science, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinfeng Tao
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
5
|
Zhou P, Shen T, Ling J. Synthesis and properties of polypeptoid‐containing block copolymers: A review. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peng Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ting Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
6
|
Darguzyte M, Holm R, Baier J, Drude N, Schultze J, Koynov K, Schwiertz D, Dadfar SM, Lammers T, Barz M, Kiessling F. Influence of Riboflavin Targeting on Tumor Accumulation and Internalization of Peptostar Based Drug Delivery Systems. Bioconjug Chem 2020; 31:2691-2696. [PMID: 33237762 DOI: 10.1021/acs.bioconjchem.0c00593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Riboflavin carrier protein (RCP) and riboflavin transporters (RFVTs) have been reported to be highly overexpressed in various cancer cells. Hence, targeting RCP and RFVTs using riboflavin may enhance tumor accumulation and internalization of drug delivery systems. To test this hypothesis, butyl-based 3-arm peptostar polymers were synthesized consisting of a lysine core (10 units per arm) and a sarcosine shell (100 units per arm). The end groups of the arms and the core were successfully modified with riboflavin and the Cy5.5 fluorescent dye, respectively. While in phosphate buffered saline the functionalized peptostars showed a bimodal behavior and formed supramolecular structures over time, they were stable in the serum maintaining their hydrodynamic diameter of 12 nm. Moreover, the polymers were biocompatible and the uptake of riboflavin targeted peptostars in A431 and PC3 cells was higher than in nontargeted controls and could be blocked competitively. In vivo, the polymers showed a moderate passive tumor accumulation, which was not significantly different between targeted and nontargeted peptostars. Nonetheless, at the histological level, internalization into tumor cells was strongly enhanced for the riboflavin-targeted peptostars. Based on these results, we conclude that passive accumulation is dominating the accumulation of peptostars, while tumor cell internalization is strongly promoted by riboflavin targeting.
Collapse
Affiliation(s)
- Milita Darguzyte
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Regina Holm
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Jasmin Baier
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Natascha Drude
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Schwiertz
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Seyed Mohammadali Dadfar
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Hospital Aachen, Forckenbeckstrasse 55, 52074 Aachen, Germany.,Fraunhofer MEVIS, Institute for Medical Image Computing, Forckenbeckstrasse 55, 52074 Aachen, Germany
| |
Collapse
|
7
|
Westmeier D, Siemer S, Vallet C, Steinmann J, Docter D, Buer J, Knauer SK, Stauber RH. Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological environments. NANOSCALE ADVANCES 2020; 2:5428-5440. [PMID: 36132026 PMCID: PMC9419095 DOI: 10.1039/d0na00644k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/21/2020] [Indexed: 06/15/2023]
Abstract
Nanomaterials are promising novel antibiotics, but often ineffective. We found that nanomaterial-bacteria complex formation occurred with various nanomaterials. The bactericidal activity of NMs strongly depends on their physical binding to (multidrug-resistant) bacteria. Nanomaterials' binding and antibiotic effect was reduced by various pathophysiological biomolecule coronas strongly inhibiting their antibiotic effects. We show from analytical to in vitro to in vivo that nanomaterial-based killing could be restored by acidic pH treatments. Here, complex formation of negatively-charged, plasma corona-covered, nanomaterials with bacteria was electrostatically enhanced by reducing bacteria's negative surface charge. Employing in vivo skin infection models, acidic pH-induced complex formation was critical to counteract Staphylococcus aureus infections by silver nanomaterials. We explain why nano-antibiotics show reduced activity and provide a clinically practical solution.
Collapse
Affiliation(s)
- Dana Westmeier
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Svenja Siemer
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Cecilia Vallet
- Department of Molecular Biology II, Center for Medical Biotechnology/Nanointegration (ZMB/CENIDE), University Duisburg-Essen, Universitätsstrasse 5 45117 Essen Germany
| | - Jörg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen Hufelandstrasse 55 45112 Essen Germany
| | - Dominic Docter
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen Hufelandstrasse 55 45112 Essen Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology/Nanointegration (ZMB/CENIDE), University Duisburg-Essen, Universitätsstrasse 5 45117 Essen Germany
| | - Roland H Stauber
- ENT Department, University Medical Center Mainz Langenbeckstrasse 1 55131 Mainz Germany
| |
Collapse
|
8
|
Stauber RH, Westmeier D, Wandrey M, Becker S, Docter D, Ding GB, Thines E, Knauer SK, Siemer S. Mechanisms of nanotoxicity - biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology 2020; 14:1157-1174. [PMID: 32835557 DOI: 10.1080/17435390.2020.1808251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Whereas nanotoxicity is intensely studied in mammalian systems, our knowledge of desired or unwanted nano-based effects for microbes is still limited. Fungal infections are global socio-economic health and agricultural problems, and current chemical antifungals may induce adverse side-effects in humans and ecosystems. Thus, nanoparticles are discussed as potential novel and sustainable antifungals via the desired nanotoxicity but often fail in practical applications. In our study, we found that nanoparticles' toxicity strongly depends on their binding to fungal spores, including the clinically relevant pathogen Aspergillus fumigatus as well as common plant pests, such as Botrytis cinerea or Penicillum expansum. Employing a selection of the model and antimicrobial nanoparticles, we found that nanoparticle-spore complex formation is influenced by the NM's physicochemical properties, such as size, identified as a key determinant for our silica model particles. Biomolecule coronas acquired in pathophysiologically and ecologically relevant environments, protected fungi against nanoparticle-induced toxicity as shown by employing antimicrobial ZnO, Ag, or CuO nanoparticles as well as dissolution-resistant quantum dots. Mechanistically, dose-dependent corona-mediated resistance was conferred via reducing the physical adsorption of nanoparticles to fungi. The inhibitory effect of biomolecules on nano-based toxicity of Ag NPs was further verified in vivo, using the invertebrate Galleria mellonella as an alternative non-mammalian infection model. We provide the first evidence that biomolecule coronas are not only relevant in mammalian systems but also for nanomaterial designs as future antifungals for human health, biotechnology, and agriculture.
Collapse
Affiliation(s)
| | - Dana Westmeier
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Madita Wandrey
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Sven Becker
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Dominic Docter
- ENT Department, University Medical Center Mainz, Mainz, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, Shanxi, China
| | - Eckhard Thines
- Institute for Microbiology, Johannes Gutenberg University, Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen, Germany
| | - Svenja Siemer
- ENT Department, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
9
|
Skoulas D, Stuettgen V, Gaul R, Cryan SA, Brayden DJ, Heise A. Amphiphilic Star Polypept(o)ides as Nanomeric Vectors in Mucosal Drug Delivery. Biomacromolecules 2020; 21:2455-2462. [PMID: 32343127 DOI: 10.1021/acs.biomac.0c00381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mucosal delivery across the gastrointestinal (GI) tract, airways, and buccal epithelia is an attractive mode of therapeutic administration, but the challenge is to overcome the mucus and epithelial barriers. Here, we present degradable star polypept(o)ides capable of permeating both barriers as a promising biomaterial platform for mucosal delivery. Star polypept(o)ides were obtained by the initiation of benzyl-l-glutamate N-carboxyanhydride (NCA) from an 8-arm poly(propyleneimine) (PPI) dendrimer, with subsequent chain extension with sarcosine NCA. The hydrophobic poly(benzyl-l-glutamate) (PBLG) block length was maintained at 20 monomers, while the length of the hydrophilic poly(sarcosine) (PSar) block ranged from 20-640 monomers to produce star polypept(o)ides with increasing hydrophilic: hydrophobic ratios. Transmission electron microscopy (TEM) images revealed elongated particles of ∼120 nm length, while dynamic light scattering (DLS) provided evidence of a decrease in the size of polymer aggregates in water with increasing poly(sarcosine) block length, with the smallest size obtained for the star PBLG20-b-PSar640. Fluorescein isothiocyanate (FITC)-conjugated PBLG20-b-PSar640 permeated artificial mucus and isolated rat mucus, as well as rat intestinal jejunal tissue mounted in Franz diffusion chambers. An apparent permeability coefficient (Papp) of 15.4 ± 3.1 ×10-6 cm/s for FITC-PBLG20-b-PSar640 was calculated from the transepithelial flux obtained with the apical-side addition of 7.5 mg polypept(o)ide to jejunal tissue over 2 h. This Papp could not be accounted for by flux of unconjugated FITC. Resistance to trypsin demonstrated the stability of FITC-labeled polypept(o)ide over 2 h, but enzymatic degradation at the mucus-epithelial interface or during flux could not be ruled out as contributing to the Papp. The absence of any histological damage to the jejunal tissue during the 2 h exposure suggests that the flux was not associated with overt toxicity.
Collapse
Affiliation(s)
- Dimitrios Skoulas
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Vivien Stuettgen
- School of Veterinary Medicine and Conway Institute, University College Dublin, Veterinary Science Centre, Belfield, Dublin D04, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Rachel Gaul
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| | - David J Brayden
- School of Veterinary Medicine and Conway Institute, University College Dublin, Veterinary Science Centre, Belfield, Dublin D04, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland
| | - Andreas Heise
- Department of Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin D02, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), RCSI, Dublin 02 and University College Dublin,Dublin D04, Ireland.,AMBER, The SFI Advanced Materials and Bioengineering Research Centre, RCSI, Dublin D02, Ireland
| |
Collapse
|
10
|
|
11
|
Holm R, Schwiertz D, Weber B, Schultze J, Kuhn J, Koynov K, Lächelt U, Barz M. Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromol Biosci 2019; 20:e1900152. [PMID: 31430057 DOI: 10.1002/mabi.201900152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Indexed: 12/23/2022]
Abstract
RNA interference provides enormous potential for the treatment of several diseases, including cancer. Nevertheless, successful therapies based on siRNA require overcoming various challenges, such as poor pharmacokinetic characteristics of the small RNA molecule and inefficient cytosolic accumulation. In this respect, the development of functional siRNA carrier systems is a major task in biomedical research. To provide such a desired system, the synthesis of 3-arm and 6-arm PeptoStars is aimed for. The different branched polypept(o)idic architectures share a stealth-like polysarcosine corona for efficient shielding and a multifunctional polylysine core, which can be independently varied in size and functionality for siRNA complexation-, transport and intra cellular release. The special feature of star-like polypept(o)ides is in their uniform small size (<20 nm) and a core-shell structure, which implies a high stability and stealth-like properties and thus, they may combine long circulation times and a deep penetration of cancerous tissue. Initial toxicity and complement studies demonstrate well tolerated cationic PeptoStars with high complexation capability toward siRNA (N/P ratio up to 3:1), which can lead to potent RNAi for optimized systems. Here, the synthetic development of 3-arm and 6-arm polypept(o)idic star polymers, their modification with endosomolytic moieties, and first in vitro insights on RNA interference are reported on.
Collapse
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - David Schwiertz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jasmin Kuhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
12
|
Yu H, Ingram N, Rowley JV, Parkinson S, Green DC, Warren NJ, Thornton PD. Thermoresponsive polysarcosine-based nanoparticles. J Mater Chem B 2019. [DOI: 10.1039/c9tb00588a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polysarcosine modified with limited molar amounts of (N-(2-hydroxypropyl)methacrylamide) yields a block copolymer capable of forming thermoresponsive nanoparticles that are suitable for controlled release applications.
Collapse
Affiliation(s)
- Huayang Yu
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - Nicola Ingram
- Leeds Institute of Biomedical and Clinical Sciences
- Wellcome Trust Brenner Building
- St James's University Hospital
- Leeds
- UK
| | | | - Sam Parkinson
- School of Chemical and Process Engineering
- University of Leeds
- Leeds
- UK
| | | | | | | |
Collapse
|
13
|
Holm R, Douverne M, Weber B, Bauer T, Best A, Ahlers P, Koynov K, Besenius P, Barz M. Impact of Branching on the Solution Behavior and Serum Stability of Starlike Block Copolymers. Biomacromolecules 2018; 20:375-388. [DOI: 10.1021/acs.biomac.8b01545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Regina Holm
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Marcel Douverne
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Bauer
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Best
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Patrick Ahlers
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pol Besenius
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
14
|
Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, Thyssen C, Schilling O, Hasenberg M, Pang C, Docter D, Knauer SK, Stauber RH, Strieth S. Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials 2018; 192:551-559. [PMID: 30530244 DOI: 10.1016/j.biomaterials.2018.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022]
Abstract
Multidrug-resistant bacterial infections are a global health threat. Nanoparticles are thus investigated as novel antibacterial agents for clinical practice, including wound dressings and implants. We report that nanoparticles' bactericidal activity strongly depends on their physical binding to pathogens, including multidrug-resistant primary clinical isolates, such as Staphylococcus aureus, Klebsiella pneumoniae or Enterococcus faecalis. Using controllable nanoparticle models, we found that nanoparticle-pathogen complex formation was enhanced by small nanoparticle size rather than material or charge, and was prevented by 'stealth' modifications. Nanoparticles seem to preferentially bind to Gram-positive pathogens, such as Listeria monocytogenes, S. aureus or Streptococcus pyrogenes, correlating with enhanced antibacterial activity. Bacterial resistance to metal-based nanoparticles was mediated by biomolecule coronas acquired in pathophysiological environments, such as wounds, the lung, or the blood system. Biomolecule corona formation reduced nanoparticles' binding to pathogens, but did not impact nanoparticle dissolution. Our results provide a mechanistic explanation why nano-sized antibiotics may show reduced activity in clinically relevant environments, and may inspire future nanoantibiotic designs with improved and potentially pathogen-specific activity.
Collapse
Affiliation(s)
- Svenja Siemer
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Dana Westmeier
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Matthias Barz
- Institute for Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, D-55099, Mainz, Germany
| | - Jonas Eckrich
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Désirée Wünsch
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Christof Seckert
- Institute for Medical Microbiology and Hygiene, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Christian Thyssen
- Biofilm Centre, University Duisburg-Essen, Universitätsstraße 5, 45117, Essen, Germany
| | - Oliver Schilling
- Institute of Institute of Surgical Pathology/Translational Proteomics, University of Freiburg, Breisacher Strasse 115a, 79106, Freiburg, Germany
| | - Mike Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Chengfang Pang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 115, 2800, Kgs. Lyngby, Denmark
| | - Dominic Docter
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany
| | - Shirley K Knauer
- Department of Molecular Biology II, Centre for Medical Biotechnology (ZMB)/CENIDE, University Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany
| | - Roland H Stauber
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| | - Sebastian Strieth
- Department of Nanobiomedicine/ENT, University Medical Center of Mainz, Langenbeckstrasse 1, 55101, Mainz, Germany.
| |
Collapse
|
15
|
Gebru H, Wang X, Li Z, Liu J, Xu J, Wang H, Xu S, Wei F, Zhu H, Guo K. Brønsted base mediated one-pot synthesis of catechol-ended amphiphilic polysarcosine-b-poly(N-butyl glycine) diblock copolypeptoids. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Catechol moiety offers a versatile platform in the preparation of functionalized polymers, but it is not usually compatible with catalysis in polymerizations. To address these challenges, we suggest employment of one Brønsted base in masking the activity of catechol moiety and to modulate the polymerization. Based on this strategy, the ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCA) was carried out using dopamine hydrochloride as an initiator and triethylamine as a Brønsted base. PSar with predicted molecular weights (M
n,NMR=3.7 kg mol−1) and narrow dispersities (Đ<1.13) was prepared. Catechol initiator was successfully linked to PSar end as confirmed by MALDI-ToF MS. Subsequently, copolymerization of N-butyl glycine N-carboxyanhydrides (Bu-Gly-NCA) from the PSar in one-pot produced catechol end-functionalized amphiphilic polysarcosine-block-poly(N-butyl glycine) diblock copolypeptoids (cat-PSar-b-PGlyBu). Further, cat-PSar-b-PGlyBu enabled the aqueous dispersion of manganese oxide nanoparticles which was attributable to the anchor of the diblock copolymers onto the surface of the nanoparticles. The strategy for catechol masking and polymerization mediating by one Brønsted base offered a new avenue into the synthesis of catechol-ended block copolymers.
Collapse
Affiliation(s)
- Hailemariam Gebru
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
- Department of Chemistry , Mizan-Tepi University , PO Box 260 , Tepi , Ethiopia
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Jingjing Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Jiaxi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Haixin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Songquan Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Fulan Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Hui Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering , College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , 30 Puzhu Road South , Nanjing 211816 , China
| |
Collapse
|
16
|
Schäfer O, Barz M. Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chemistry 2018; 24:12131-12142. [DOI: 10.1002/chem.201800681] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Olga Schäfer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
17
|
Westmeier D, Hahlbrock A, Reinhardt C, Fröhlich-Nowoisky J, Wessler S, Vallet C, Pöschl U, Knauer SK, Stauber RH. Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem Soc Rev 2018; 47:5312-5337. [DOI: 10.1039/c6cs00691d] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
NPs’ characteristics impact their spontaneous binding to microbes, which may affect the (patho)biological identity of both NP and microbes.
Collapse
Affiliation(s)
- D. Westmeier
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - A. Hahlbrock
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| | - C. Reinhardt
- Center for Thrombosis and Hemostasis
- University Medical Center Mainz
- 55101 Mainz
- Germany
| | - J. Fröhlich-Nowoisky
- Multiphase Chemistry Department
- Max Planck Institute for Chemistry
- 55128 Mainz
- Germany
| | - S. Wessler
- Department of Molecular Biology
- Paris-Lodron University of Salzburg
- A-5020 Salzburg
- Austria
| | - C. Vallet
- Institute for Molecular Biology
- CENIDE
- University Duisburg-Essen
- 45117 Essen
- Germany
| | - U. Pöschl
- Multiphase Chemistry Department
- Max Planck Institute for Chemistry
- 55128 Mainz
- Germany
| | - S. K. Knauer
- Institute for Molecular Biology
- CENIDE
- University Duisburg-Essen
- 45117 Essen
- Germany
| | - R. H. Stauber
- Department of Nanobiomedicine/ENT
- University Medical Center of Mainz
- 55101 Mainz
- Germany
| |
Collapse
|
18
|
Chan BA, Xuan S, Li A, Simpson JM, Sternhagen GL, Yu T, Darvish OA, Jiang N, Zhang D. Polypeptoid polymers: Synthesis, characterization, and properties. Biopolymers 2017; 109. [DOI: 10.1002/bip.23070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Brandon A. Chan
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Sunting Xuan
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Ang Li
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Jessica M. Simpson
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Garrett L. Sternhagen
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Tianyi Yu
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Omead A. Darvish
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Naisheng Jiang
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies GroupLouisiana State UniversityBaton Rouge70803Los Angeles
| |
Collapse
|
19
|
Duro-Castano A, Nebot VJ, Niño-Pariente A, Armiñán A, Arroyo-Crespo JJ, Paul A, Feiner-Gracia N, Albertazzi L, Vicent MJ. Capturing "Extraordinary" Soft-Assembled Charge-Like Polypeptides as a Strategy for Nanocarrier Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702888. [PMID: 28834624 DOI: 10.1002/adma.201702888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Indexed: 05/24/2023]
Abstract
The rational design of nanomedicines is a challenging task given the complex architectures required for the construction of nanosized carriers with embedded therapeutic properties and the complex interface of these materials with the biological environment. Herein, an unexpected charge-like attraction mechanism of self-assembly for star-shaped polyglutamates in nonsalty aqueous solutions is identified, which matches the ubiquitous "ordinary-extraordinary" phenomenon previously described by physicists. For the first time, a bottom-up methodology for the stabilization of these nanosized soft-assembled star-shaped polyglutamates is also described, enabling the translation of theoretical research into nanomaterials with applicability within the drug-delivery field. Covalent capture of these labile assemblies provides access to unprecedented architectures to be used as nanocarriers. The enhanced in vitro and in vivo properties of these novel nanoconstructs as drug-delivery systems highlight the potential of this approach for tumor-localized as well as lymphotropic delivery.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Vicent J Nebot
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Amaya Niño-Pariente
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Juan J Arroyo-Crespo
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Alison Paul
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Natalia Feiner-Gracia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|