1
|
Yoon S, Fuwad A, Jeong S, Cho H, Jeon TJ, Kim SM. Surface Deformation of Biocompatible Materials: Recent Advances in Biological Applications. Biomimetics (Basel) 2024; 9:395. [PMID: 39056836 PMCID: PMC11274418 DOI: 10.3390/biomimetics9070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The surface topography of substrates is a crucial factor that determines the interaction with biological materials in bioengineering research. Therefore, it is important to appropriately modify the surface topography according to the research purpose. Surface topography can be fabricated in various forms, such as wrinkles, creases, and ridges using surface deformation techniques, which can contribute to the performance enhancement of cell chips, organ chips, and biosensors. This review provides a comprehensive overview of the characteristics of soft, hard, and hybrid substrates used in the bioengineering field and the surface deformation techniques applied to the substrates. Furthermore, this review summarizes the cases of cell-based research and other applications, such as biosensor research, that utilize surface deformation techniques. In cell-based research, various studies have reported optimized cell behavior and differentiation through surface deformation, while, in the biosensor and biofilm fields, performance improvement cases due to surface deformation have been reported. Through these studies, we confirm the contribution of surface deformation techniques to the advancement of the bioengineering field. In the future, it is expected that the application of surface deformation techniques to the real-time interaction analysis between biological materials and dynamically deformable substrates will increase the utilization and importance of these techniques in various fields, including cell research and biosensors.
Collapse
Affiliation(s)
- Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Industry-Academia Interactive R&E Center for Bioprocess Innovation (BK21), Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
| | - Seorin Jeong
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
| | - Hyeran Cho
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Industry-Academia Interactive R&E Center for Bioprocess Innovation (BK21), Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.Y.); (H.C.)
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (A.F.); (S.J.)
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
2
|
Martín D, Ruano D, Yúfera A, Daza P. Electrical pulse stimulation parameters modulate N2a neuronal differentiation. Cell Death Discov 2024; 10:49. [PMID: 38272891 PMCID: PMC10810886 DOI: 10.1038/s41420-024-01820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Electrical pulse stimulation has been used to enhance the differentiation or proliferation of neuronal progenitor cells in tissue engineering and cancer treatment. Therefore, a comprehensive investigation of the effects caused by its parameters is crucial for improvements in those fields. We propose a study of pulse parameters, to allow the control of N2a cell line fate and behavior. We have focused on designing an experimental setup that allows for the knowledge and control over the environment and the stimulation signals applied. To map the effects of the stimulation on N2a cells, their morphology and the cellular and molecular reactions induced by the pulse stimulation have been analyzed. Immunofluorescence, rt-PCR and western blot analysis have been carried out for this purpose, as well as cell counting. Our results show that low-amplitude electrical pulse stimulation promotes proliferation of N2a cells, whilst amplitudes in the range 250 mV/mm-500 mV/mm induce differentiation. Amplitudes higher than 750 mV/mm produce cell damage at low frequencies. For high frequencies, large amplitudes are needed to cause cell death. An inverse relation has been found between cell density and pulse-induced neuronal differentiation. The best condition for neuronal differentiation was found to be 500 mV/mm at 100 Hz. These findings have been confirmed by up-regulation of the Neurod1 gene. Our preliminary study of the molecular effects of electrical pulse stimulation on N2a offers premonitory clues of the PI3K/Akt/GSK-3β pathway implications on the neuronal differentiation process through ES. In general, we have successfully mapped the sensitivity of N2a cells to electrical pulse stimulation parameters.
Collapse
Affiliation(s)
- Daniel Martín
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
- Instituto de Microelectrónica de Sevilla (IMSE), Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Alberto Yúfera
- Instituto de Microelectrónica de Sevilla (IMSE), Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Tecnología Electrónica, ETSII, Universidad de Sevilla, Sevilla, Spain
| | - Paula Daza
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
3
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
4
|
Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in Cell-Conductive Polymer Biointerfaces and Role of the Plasma Membrane. Chem Rev 2022; 122:4552-4580. [PMID: 34582168 PMCID: PMC8874911 DOI: 10.1021/acs.chemrev.1c00363] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 02/07/2023]
Abstract
The plasma membrane (PM) is often described as a wall, a physical barrier separating the cell cytoplasm from the extracellular matrix (ECM). Yet, this wall is a highly dynamic structure that can stretch, bend, and bud, allowing cells to respond and adapt to their surrounding environment. Inspired by shapes and geometries found in the biological world and exploiting the intrinsic properties of conductive polymers (CPs), several biomimetic strategies based on substrate dimensionality have been tailored in order to optimize the cell-chip coupling. Furthermore, device biofunctionalization through the use of ECM proteins or lipid bilayers have proven successful approaches to further maximize interfacial interactions. As the bio-electronic field aims at narrowing the gap between the electronic and the biological world, the possibility of effectively disguising conductive materials to "trick" cells to recognize artificial devices as part of their biological environment is a promising approach on the road to the seamless platform integration with cells.
Collapse
Affiliation(s)
- Anna Mariano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Claudia Lubrano
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Ugo Bruno
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Chiara Ausilio
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Nikita Bhupesh Dinger
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Dipartimento
di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, 80125 Naples, Italy
| | - Francesca Santoro
- Tissue
Electronics, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| |
Collapse
|
5
|
Lee SM, Lee JE, Lee YK, Yoo DA, Seon DB, Lee DW, Kim CB, Choi H, Lee KH. Thermal-Corrosion-Free Electrode-Integrated Cell Chip for Promotion of Electrically Stimulated Neurite Outgrowth. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00049-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
7
|
Daghigh Shirazi H, Dong Y, Niskanen J, Fedele C, Priimagi A, Jokinen VP, Vapaavuori J. Multiscale Hierarchical Surface Patterns by Coupling Optical Patterning and Thermal Shrinkage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15563-15571. [PMID: 33756081 PMCID: PMC8041256 DOI: 10.1021/acsami.0c22436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Herein, a simple hierarchical surface patterning method is presented by effectively combining buckling instability and azopolymer-based surface relief grating inscription. In this technique, submicron patterns are achieved using azopolymers, whereas the microscale patterns are fabricated by subsequent thermal shrinkage. The wetting characterization of various topographically patterned surfaces confirms that the method permits tuning of contact angles and choosing between isotropic and anisotropic wetting. Altogether, this method allows efficient fabrication of hierarchical surfaces over several length scales in relatively large areas, overcoming some limitations of fabricating multiscale roughness in lithography and also methods of creating merely random patterns, such as black silicon processing or wet etching of metals. The demonstrated fine-tuning of the surface patterns may be useful in optimizing surface-related material properties, such as wetting and adhesion, producing substrates that are of potential interest in mechanobiology and tissue engineering.
Collapse
Affiliation(s)
- Hamidreza Daghigh Shirazi
- Department
of Chemistry and Materials Science, Aalto
University School of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
| | - Yujiao Dong
- Department
of Chemistry and Materials Science, Aalto
University School of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
| | - Jukka Niskanen
- Département
de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Quebec, Canada H3C 3J7
| | - Chiara Fedele
- Smart
Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, FI-33720 Tampere, Finland
| | - Arri Priimagi
- Smart
Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 10, FI-33720 Tampere, Finland
| | - Ville P. Jokinen
- Department
of Chemistry and Materials Science, Aalto
University School of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
| | - Jaana Vapaavuori
- Department
of Chemistry and Materials Science, Aalto
University School of Chemical Engineering, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
8
|
Ferrari LM, Rodríguez-Meana B, Bonisoli A, Cutrone A, Micera S, Navarro X, Greco F, Del Valle J. All-Polymer Printed Low-Cost Regenerative Nerve Cuff Electrodes. Front Bioeng Biotechnol 2021; 9:615218. [PMID: 33644015 PMCID: PMC7902501 DOI: 10.3389/fbioe.2021.615218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Neural regeneration after lesions is still limited by several factors and new technologies are developed to address this issue. Here, we present and test in animal models a new regenerative nerve cuff electrode (RnCE). It is based on a novel low-cost fabrication strategy, called "Print and Shrink", which combines the inkjet printing of a conducting polymer with a heat-shrinkable polymer substrate for the development of a bioelectronic interface. This method allows to produce miniaturized regenerative cuff electrodes without the use of cleanroom facilities and vacuum based deposition methods, thus highly reducing the production costs. To fully proof the electrodes performance in vivo we assessed functional recovery and adequacy to support axonal regeneration after section of rat sciatic nerves and repair with RnCE. We investigated the possibility to stimulate the nerve to activate different muscles, both in acute and chronic scenarios. Three months after implantation, RnCEs were able to stimulate regenerated motor axons and induce a muscular response. The capability to produce fully-transparent nerve interfaces provided with polymeric microelectrodes through a cost-effective manufacturing process is an unexplored approach in neuroprosthesis field. Our findings pave the way to the development of new and more usable technologies for nerve regeneration and neuromodulation.
Collapse
Affiliation(s)
- Laura M Ferrari
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.,The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy.,Université Côte d'Azur, INRIA, Sophia Antipolis, France
| | - Bruno Rodríguez-Meana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Alberto Bonisoli
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.,The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Annarita Cutrone
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Francesco Greco
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.,Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Graz, Austria.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| |
Collapse
|
9
|
Sun W, Jin S, Zhang A, Huang J, Li Y, Liu X, Chen H. Vascular cell responses to silicone surfaces grafted with heparin-like polymers: surface chemical composition vs. topographic patterning. J Mater Chem B 2020; 8:9151-9161. [PMID: 32945818 DOI: 10.1039/d0tb01000f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Heparin-like polymers are promising synthetic materials with biological functionalities, such as anticoagulant ability, growth factor binding to regulate cellular functions, and inflammation mediation, similar to heparin. The biocompatibility of heparin-like polymers with well-defined chemical structures has inspired many researchers to design heparin-like surfaces to explore their biological applications. The concept of the recombination of functional heparin structural units (sulfonate- and glyco-containing units) was proven to be successful in designing heparin-mimicking surfaces. However, besides surface structural units, topographic patterning is also an important contributor to the biological activity of the surfaces modified with heparin-like polymers. In this work, both surface structural units and topographic patterning were taken into account to investigate the vascular cell behaviors on the silicone surfaces. A facile method for the production of patterned bromine-containing polydimethylsiloxane surface (PDMS-Br) was developed from a one-step multicomponent thermocuring procedure and replica molding using a nanohole-arrayed silicon template. Different structural units of heparin-like polymers, i.e. homopolymer of sulfonate-containing sodium 4-vinylbenzenesulfonate (pSS), homopolymer of glyco-containing 2-(methacrylamido)glucopyranose (pMAG), and copolymers of MAG and SS (pSG), were then introduced on the flat and patterned PDMS-Br surface using visible light-induced graft polymerization. For the flat surfaces, compared with the PDMS-Br surface, pSS-grafted and pSG-grafted surfaces significantly increased cell densities of both human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs), indicating that they are "vascular cell-friendly". In contrast, the pMAG-grafted surface showed decreased cell attachment of both HUVECs and HUVSMCs, indicating that the pMAG-grafted surface is "vascular cell-resistant". Moreover, surface topographic patterning enhanced the cell responses to the corresponding flat surfaces. That is to say, surface patterning can make the "vascular cell-friendly" surface still friendly, and the "vascular cell-resistant" surface much more resistant. The combination of surface structural units and topographic patterning shows promise in the preparation of new heparin-like surfaces with improved cell compatibility that is suitable for blood-compatible biomaterials.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
10
|
Nguyen DHK, Bazaka O, Bazaka K, Crawford RJ, Ivanova EP. Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends Biotechnol 2020; 38:558-571. [PMID: 32302580 DOI: 10.1016/j.tibtech.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Kateryna Bazaka
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 2600, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia.
| |
Collapse
|
11
|
Zhang YQ, Lin HA, Pan QC, Qian SH, Zhang SH, Qiu G, Luo SC, Yu HH, Zhu B. Tunable Protein/Cell Binding and Interaction with Neurite Outgrowth of Low-Impedance Zwitterionic PEDOTs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12362-12372. [PMID: 32057222 DOI: 10.1021/acsami.9b23025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) is an effective electronic material for bioelectronics because it exhibits efficient electrical trade-off and diminishes immune response. To promote the use of zwitterionic PEDOTs in bioelectronic devices, especially for cell alignment control and close electrocoupling, features such as tunable interaction of PEDOTs with proteins/cells and spatially modulating cell behavior are required. However, there is a lack of reliable methods to assemble zwitterionic EDOTs with other functionalized EDOT materials, having different polarities and oxidation potentials, to prepare PEDOTs with the aforementioned surface properties. In this study, we have developed a surfactant-assisted electropolymerization to assemble phosphorylcholine (PC)-functionalized EDOT with other functionalized EDOTs. By adjusting compositions, the interaction of PEDOT copolymers with proteins/cells can be finely tuned; the composition adjustment has an ignorable influence on the impedance of the copolymers. We also demonstrate that the cell-repulsive force generated from PC can spatially guide the neurite outgrowth to form a neuron network at single-cell resolution and greatly enhance the neurite outgrowth by 179%, which is significantly more distinctive than the reported topography effect. We expect that the derived tunable protein/cell interaction and the PC-induced repulsive guidance for the neurite outgrowth can make low-impedance zwitterionic PEDOTs more useful in bioelectronics.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Hsing-An Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Qi-Chao Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Si-Hao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shu-Hua Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Gao Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsiao-Hua Yu
- Institute of Chemistry Academia Sinica, 128 Academic Road, Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| |
Collapse
|
12
|
Garma LD, Ferrari LM, Scognamiglio P, Greco F, Santoro F. Inkjet-printed PEDOT:PSS multi-electrode arrays for low-cost in vitro electrophysiology. LAB ON A CHIP 2019; 19:3776-3786. [PMID: 31616896 DOI: 10.1039/c9lc00636b] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multi-electrode arrays (MEAs) have become a key element in the study of cellular phenomena in vitro. Common modern MEAs are still based on costly microfabrication techniques, making them expensive tools that researchers are pushed to reuse, compromising the reproducibility and the quality of the acquired data. There is a need to develop novel fabrication strategies, able to produce disposable devices that incorporate advanced technologies beyond the standard metal electrodes on rigid substrates. Here we present an innovative fabrication process for the production of polymer-based flexible MEAs. The device fabrication exploited inkjet printing, as this low-cost manufacturing method allows for an easy and reliable patterning of conducting polymers. Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) was used as the sole conductive element of the MEAs. The physical structure and the electrical properties of the plastic/printed MEAs (pMEAs) were characterised, showing a low impedance that is maintained also in the long term. The biocompatibility of the devices was demonstrated, and their capability to successfully establish a tight coupling with cells was proved. Furthermore, the pMEAs were used to monitor the extracellular potentials from cardiac cell cultures and to record high quality electrophysiological signals from them. Our results validate the use of pMEAs as in vitro electrophysiology platforms, pushing for the adoption of innovative fabrication techniques and the use of new materials for the production of MEAs.
Collapse
Affiliation(s)
- Leonardo D Garma
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Laura M Ferrari
- Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.
| | - Paola Scognamiglio
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Francesco Greco
- Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy. and Institute of Solid State Physics, Graz University of Technology, Austria.
| | - Francesca Santoro
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| |
Collapse
|
13
|
Kim S, Jang LK, Jang M, Lee S, Hardy JG, Lee JY. Electrically Conductive Polydopamine-Polypyrrole as High Performance Biomaterials for Cell Stimulation in Vitro and Electrical Signal Recording in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33032-33042. [PMID: 30192136 DOI: 10.1021/acsami.8b11546] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conductive polymers (CPs) such as polypyrrole (PPY) are emerging biomaterials for use as scaffolds and bioelectrodes which interact with biological systems electrically. Still, more electrically conductive and biologically interactive CPs are required to develop high performance biomaterials and medical devices. In this study, in situ electrochemical copolymerization of polydopamine (PDA) and PPY were performed for electrode modification. Their material and biological properties were characterized using multiple techniques. The electrical properties of electrodes coated with PDA/PPY were superior to electrodes coated with PPY alone. The growth and differentiation of C2C12 myoblasts and PC12 neuronal cells on PDA/PPY was enhanced compared to PPY. Electrical stimulation of PC12 cells on PDA/PPY further promoted neuritogenesis. In vivo electromyography signal measurements demonstrated more sensitive signals from tibia muscles when using PDA/PPY-coated electrodes than bare or PPY-coated electrodes, revealing PDA/PPY to be a high-performance biomaterial with potential for various biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - John George Hardy
- Department of Chemistry and Materials Science Institute , Lancaster University , Lancaster , Lancashire LA1 4YB , U.K
| | | |
Collapse
|
14
|
Kim Y, Meade SM, Chen K, Feng H, Rayyan J, Hess-Dunning A, Ereifej ES. Nano-Architectural Approaches for Improved Intracortical Interface Technologies. Front Neurosci 2018; 12:456. [PMID: 30065623 PMCID: PMC6056633 DOI: 10.3389/fnins.2018.00456] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Intracortical microelectrodes (IME) are neural devices that initially were designed to function as neuroscience tools to enable researchers to understand the nervous system. Over the years, technology that aids interfacing with the nervous system has allowed the ability to treat patients with a wide range of neurological injuries and diseases. Despite the substantial success that has been demonstrated using IME in neural interface applications, these implants eventually fail due to loss of quality recording signals. Recent strategies to improve interfacing with the nervous system have been inspired by methods that mimic the native tissue. This review focusses on one strategy in particular, nano-architecture, a term we introduce that encompasses the approach of roughening the surface of the implant. Various nano-architecture approaches have been hypothesized to improve the biocompatibility of IMEs, enhance the recording quality, and increase the longevity of the implant. This review will begin by introducing IME technology and discuss the challenges facing the clinical deployment of IME technology. The biological inspiration of nano-architecture approaches will be explained as well as leading fabrication methods used to create nano-architecture and their limitations. A review of the effects of nano-architecture surfaces on neural cells will be examined, depicting the various cellular responses to these modified surfaces in both in vitro and pre-clinical models. The proposed mechanism elucidating the ability of nano-architectures to influence cellular phenotype will be considered. Finally, the frontiers of next generation nano-architecture IMEs will be identified, with perspective given on the future impact of this interfacing approach.
Collapse
Affiliation(s)
- Youjoung Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Seth M. Meade
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Keying Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - He Feng
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Jacob Rayyan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Evon S. Ereifej
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| |
Collapse
|