1
|
Arndt T, Jaudzems K, Shilkova O, Francis J, Johansson M, Laity PR, Sahin C, Chatterjee U, Kronqvist N, Barajas-Ledesma E, Kumar R, Chen G, Strömberg R, Abelein A, Langton M, Landreh M, Barth A, Holland C, Johansson J, Rising A. Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform. Nat Commun 2022; 13:4695. [PMID: 35970823 PMCID: PMC9378615 DOI: 10.1038/s41467-022-32093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Recombinant spider silk proteins (spidroins) have multiple potential applications in development of novel biomaterials, but their multimodal and aggregation-prone nature have complicated production and straightforward applications. Here, we report that recombinant miniature spidroins, and importantly also the N-terminal domain (NT) on its own, rapidly form self-supporting and transparent hydrogels at 37 °C. The gelation is caused by NT α-helix to β-sheet conversion and formation of amyloid-like fibrils, and fusion proteins composed of NT and green fluorescent protein or purine nucleoside phosphorylase form hydrogels with intact functions of the fusion moieties. Our findings demonstrate that recombinant NT and fusion proteins give high expression yields and bestow attractive properties to hydrogels, e.g., transparency, cross-linker free gelation and straightforward immobilization of active proteins at high density. Recombinant spider silks are of interest but the multimodal and aggregation-prone nature of them is a limitation. Here, the authors report on a miniature spidroin based on the N-terminal domain which forms a hydrogel at 37 °C which allows for ease of production and fusion protein modification to generate functional biomaterials.
Collapse
Affiliation(s)
- Tina Arndt
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006, Latvia
| | - Olga Shilkova
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Juanita Francis
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Mathias Johansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden, Box 7015
| | - Peter R Laity
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Solna, Sweden
| | - Urmimala Chatterjee
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Edgar Barajas-Ledesma
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Solna, Sweden
| | - Rakesh Kumar
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Maud Langton
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden, Box 7015
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 171 65, Solna, Sweden
| | - Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 10691, Stockholm, Sweden
| | - Chris Holland
- Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo, Blickagången 16, Huddinge, 141 52, Sweden. .,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden.
| |
Collapse
|
2
|
Wen R, Wang K, Yang D, Yu T, Zan X, Meng Q. The novel aciniform silk protein (AcSp2-v2) reveals the unique repetitive domain with high acid and thermal stability and self-assembly capability. Int J Biol Macromol 2021; 202:91-101. [PMID: 34973994 DOI: 10.1016/j.ijbiomac.2021.12.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Orb-weaving spiders spin a mechanically and functionally diverse range of silk fibers, each composed of one or more specific silk proteins. Of all silk types, wrapping silk combines high strength and extensibility and is made of multiple aciniform silk proteins (AcSp) that can be grouped into two AcSp types (AcSp1 and AcSp2) according to their distinct repetitive regions. Here, we present a novel and complete AcSp gene from orb weaving spider Araneus ventricosus. Phylogenetic analysis of the terminal regions of spidroins reveals that the new silk protein and the published A. ventricosus AcSp2 together form a subclade, indicating that this protein is a member of AcSp2 subclass and therefore named AcSp2 variant 2 (AcSp2-v2). The repetitive region of A. ventricosus AcSp2-v2 contains 24 cysteine residues, which is the first time that cysteine has been found in repetitive regions of spidroins. Moreover, the discovery of the ability of AcSp2-v2 repetitive domain to self-assemble into silk fibers expands the repertoire of known self-assembling sequences.
Collapse
Affiliation(s)
- Rui Wen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China
| | - Kangkang Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Dong Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Tiantian Yu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China; School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Qing Meng
- Institute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Neubauer VJ, Döbl A, Scheibel T. Silk-Based Materials for Hard Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2021; 14:674. [PMID: 33535662 PMCID: PMC7867174 DOI: 10.3390/ma14030674] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Hard tissues, e.g., bone, are mechanically stiff and, most typically, mineralized. To design scaffolds for hard tissue regeneration, mechanical, physico-chemical and biological cues must align with those found in the natural tissue. Combining these aspects poses challenges for material and construct design. Silk-based materials are promising for bone tissue regeneration as they fulfill several of such necessary requirements, and they are non-toxic and biodegradable. They can be processed into a variety of morphologies such as hydrogels, particles and fibers and can be mineralized. Therefore, silk-based materials are versatile candidates for biomedical applications in the field of hard tissue engineering. This review summarizes silk-based approaches for mineralized tissue replacements, and how to find the balance between sufficient material stiffness upon mineralization and cell survival upon attachment as well as nutrient supply.
Collapse
Affiliation(s)
- Vanessa J. Neubauer
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Annika Döbl
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften, Universität Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany; (V.J.N.); (A.D.)
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayerisches Polymerinstitut (BPI), Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|