1
|
Grilc NK, Kristl J, Zupančič Š. Can polymeric nanofibers effectively preserve and deliver live therapeutic bacteria? Colloids Surf B Biointerfaces 2024; 245:114329. [PMID: 39486375 DOI: 10.1016/j.colsurfb.2024.114329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Probiotics and live therapeutic bacteria (LTB), their strictly regulated therapeutic counterpart, are increasingly important in treating and preventing biofilm-related diseases. This necessitates new approaches to (i) preserve bacterial viability during manufacturing and storage and (ii) incorporate LTB into delivery systems for enhanced therapeutic efficacy. This review explores advances in probiotic and LTB product development, focusing on preservation, protection, and improved delivery. Preservation of bacteria can be achieved by drying methods that decelerate metabolism. These methods introduce stresses affecting viability which can be mitigated with suitable excipients like polymeric or low molecular weight stabilizers. The review emphasizes the incorporation of LTB into polymer-based nanofibers via electrospinning, enabling simultaneous drying, encapsulation, and delivery system production. Optimization of bacterial survival during electrospinning and storage is discussed, as well as controlled LTB release achievable through formulation design using gel-forming, gastroprotective, mucoadhesive, and pH-responsive polymers. Evaluation of the presence of the actual therapeutic strains, bacterial viability and activity by CFU enumeration or alternative analytical techniques is presented as a key aspect of developing effective and safe formulations with LTB. This review offers insights into designing delivery systems, especially polymeric nanofibers, for preservation and delivery of LTB, guiding readers in developing innovative biotherapeutic delivery systems.
Collapse
Affiliation(s)
- Nina Katarina Grilc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Julijana Kristl
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia
| | - Špela Zupančič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|
2
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
3
|
Gonciarz W, Brzeziński M, Orłowska W, Wawrzyniak P, Lewandowski A, Narayanan VHB, Chmiela M. Spray-dried pH-sensitive chitosan microparticles loaded with Mycobacterium bovis BCG intended for supporting treatment of Helicobacter pylori infection. Sci Rep 2024; 14:4747. [PMID: 38413775 PMCID: PMC10899647 DOI: 10.1038/s41598-024-55353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
Gram-negative spiral-shaped Helicobacter pylori (Hp) bacteria induce the development of different gastric disorders. The growing resistance of Hp to antibiotics prompts to search for new therapeutic formulations. A promising candidate is Mycobacterium bovis BCG (BCG) with immunomodulatory properties. Biodegradable mucoadhesive chitosan is a good carrier for delivering BCG mycobacteria to the gastric mucosal environment. This study aimed to show whether BCG bacilli are able to increase the phagocytic activity of Cavia porcellus-guinea pig macrophages derived from the bone marrow towards fluorescently labeled Escherichia coli. Furthermore, to encapsulate live BCG bacilli, in spray-dried chitosan microparticles (CHI-MPs), and assess the pH-dependent release of mycobacteria in pH conditions mimicking gastric (acidic) or gut (alkaline) milieu. Microparticles (MPs) were made of chitosan and coated with Pluronic F-127-(Plur) or N-Acetyl-D-Glucosamine-(GlcNAc) to increase the MPs resistance to low pH or to increase anti-Hp effect, respectively. Spray-drying method was used for microencapsulation of live BCG. The biosafety of tested CHI-MPs has been confirmed using cell models in vitro and the model of guinea pig in vivo. The CHI-MPs loaded with BCG released live mycobacteria at pH 3.0 (CHI-GlcNAc-MPs) or pH 8.0. (CHI-Plur-MPs). The CHI-MPs loaded with live BCG can be used for per os inoculation of Cavia porcellus to check the effectiveness of delivered mycobacteria in increasing anti-H. pylori host response.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Marek Brzeziński
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-636, Lodz, Poland.
| | - Weronika Orłowska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Paweł Wawrzyniak
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Artur Lewandowski
- Department of Environmental Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Stefana Zeromskiego 116, 90-924, Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, #214, ASK-II, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
4
|
Malka E, Margel S. Engineering of PVA/PVP Hydrogels for Agricultural Applications. Gels 2023; 9:895. [PMID: 37998985 PMCID: PMC10671072 DOI: 10.3390/gels9110895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Hydrogels have gained significant popularity in agricultural applications in terms of minimizing waste and mitigating the negative environmental impact of agrochemicals. This review specifically examines the utilization of environmentally friendly, shapable hydrogels composed of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) in various casings for crop protection against different pests, fertilizing, and watering. To activate their effectiveness, PVA/PVP hydrogels were loaded with both hydrophilic and hydrophobic environmentally friendly pesticides, namely hydrogen peroxide (HP), the essential oil thymol, and urea as a fertilizer, either separately or in combination. This review covers various physical and chemical approaches used for loading, shaping, and controlling the release profiles of pesticides and fertilizers. Additionally, it explores the evaluation of the chemical composition, structure, classification, rheology, and morphology of the hydrogels as well as their impact on the thermal stability of the encapsulated pesticides and fertilizer, followed by biological tests. These hydrogels significantly contribute to the stabilization and controlled release of essential nutrients and biocides for plants, while maintaining excellent biocidal and fertilizing properties as well as sustainability characteristics. By shedding light on the latest insights into the concepts, applications, and results of these hydrogels, this review demonstrates their immense potential for widespread future use in agriculture.
Collapse
Affiliation(s)
| | - Shlomo Margel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
5
|
Mafi M, Greiner A. Bioremediation of Copper-Ions by Polymer Encapsulated and Immobilized Micrococcus Luteus. Macromol Biosci 2021; 21:e2100086. [PMID: 34414670 DOI: 10.1002/mabi.202100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/09/2021] [Indexed: 11/10/2022]
Abstract
Bioremediation of copper (Cu2+ ) with immobilized Micrococcus luteus in polymer matrices has been broadly studied for a wide range of applications including wastewater treatment. Herein, the bioremediation efficiency based on modified immobilization techniques and by the addition of Cu2+ is investigated. Porous composite nonwovens with living M. luteus (living polymer composites) are prepared by encapsulation of the bacterial cells in poly(vinyl alcohol) (PVA) microparticles (M. luteus/PVA microparticles) produced by spray drying method. The M. luteus/PVA microparticles are chemically cross-linked. The hydrogel microparticles with encapsulated M. luteus are embedded in a nonwoven of poly (lactic acid) (PLA) electrospun short fibers provided by wet-laid method. Two different models of composite nonwovens are reported, in which the place position of the hydrogel PVA microparticles with encapsulated M. luteus and PLA nonwoven can affect the bioremediation process.
Collapse
Affiliation(s)
- Mahsa Mafi
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| |
Collapse
|
6
|
Mafi M, Kushmaro A, Greenblatt C, Agarwal S, Greiner A. Poly(Vinyl Alcohol)-Hydrogel Microparticles with Soft Barrier Shell for the Encapsulation of Micrococcus luteus. Macromol Biosci 2021; 21:e2000419. [PMID: 33713551 DOI: 10.1002/mabi.202000419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Indexed: 11/09/2022]
Abstract
The encapsulation of bacteria in polymers results in hybrid materials that are essential for the long-term biological activity of bacteria and formulations in practical applications. Here, the problem of bacterial escape and the exchange of metabolism products from hydrogel microparticles within an aqueous environment are addressed. Bacteria are encapsulated in chemically cross-linked poly(vinyl alcohol) (PVA) hydrogel-microparticles followed by their encapsulation in a pH-responsive and soft antibacterial shell of poly(N,N-diethylamino ethyl methacrylate) (PDEAEMA). This polymer shell acts selectively with regards to the mass transport in and out of the microparticle core and is affected by environmental parameters, such as pH and antibacterial effect. The pH-responsive PDEAEMA shell forms an open porous structure that accelerates nutrient transfer into the PVA core containing living Micrococcus luteus (M. luteus). Results show that the antibacterial effect of PDEAEMA retards the escape of bacteria up to 35 days when the shell is open. Additionally, the permeation of a small molecule into the gel, for example, methylene blue dye through the core/open-shell structure, certifies a flexible barrier for mass transport, which is required in the long term for the biological activity of encapsulated M. luteus.
Collapse
Affiliation(s)
- Mahsa Mafi
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Ariel Kushmaro
- Avram and S. Goldstein-Goren, Department of Biotechnology Engineering and The Ilse Katz, Center for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Charles Greenblatt
- Department of Microbiology and Molecular Genetics, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Seema Agarwal
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, Bayreuth, 95440, Germany
| |
Collapse
|