1
|
Pavón C, Benetti EM, Lorandi F. Polymer Brushes on Nanoparticles for Controlling the Interaction with Protein-Rich Physiological Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11843-11857. [PMID: 38787578 DOI: 10.1021/acs.langmuir.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The interaction of nanoparticles (NPs) with biological environments triggers the formation of a protein corona (PC), which significantly influences their behavior in vivo. This review explores the evolving understanding of PC formation, focusing on the opportunity for decreasing or suppressing protein-NP interactions by macromolecular engineering of NP shells. The functionalization of NPs with a dense, hydrated polymer brush shell is a powerful strategy for imparting stealth properties in order to elude recognition by the immune system. While poly(ethylene glycol) (PEG) has been extensively used for this purpose, concerns regarding its stability and immunogenicity have prompted the exploration of alternative polymers. The stealth properties of brush shells can be enhanced by tailoring functionalities and structural parameters, including the molar mass, grafting density, and polymer topology. Determining correlations between these parameters and biopassivity has enabled us to obtain polymer-grafted NPs with high colloidal stability and prolonged circulation time in biological media.
Collapse
Affiliation(s)
- Carlos Pavón
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Edmondo M Benetti
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Francesca Lorandi
- Laboratory for Macromolecular and Organic Chemistry (MOC), Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
2
|
Heaugwane D, Cerlati O, Belkhir K, Tarek Benkhaled B, Catrouillet S, Fabing I, Claparols C, Vedrenne M, Goudounèche D, Payré B, Lucia Bona B, Tosi A, Baldelli Bombelli F, Vicendo P, Lapinte V, Lonetti B, Mingotaud AF, Gibot L. Coumarin-poly(2-oxazoline)s as synergetic and protein-undetected nanovectors for photodynamic therapy. Int J Pharm 2024; 658:124186. [PMID: 38701908 DOI: 10.1016/j.ijpharm.2024.124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Because of the difficult challenges of nanopharmaceutics, the development of a variety of nanovectors is still highly desired. Photodynamic therapy, which uses a photosensitizer to locally produce reactive oxygen species to kill the undesired cells, is a typical example for which encapsulation has been shown to be beneficial. The present work describes the use of coumarin-functionalized polymeric nanovectors based on the self-assembly of amphiphilic poly(2-oxazoline)s. Encapsulation of pheophorbide a, a known PDT photosensitizer, is shown to lead to an increased efficiency compared to the un-encapsulated version. Interestingly, the presence of coumarin both enhances the desired photocytotoxicity and enables the crosslinking of the vectors. Various nanovectors are examined, differing by their size, shape and hydrophilicity. Their behaviour in PDT protocols on HCT-116 cells monolayers is described, the influence of their crosslinking commented. Furthermore, the formation of a protein corona is assessed.
Collapse
Affiliation(s)
- Diana Heaugwane
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Orélia Cerlati
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Kedafi Belkhir
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Isabelle Fabing
- Laboratoire SPCMIB, CNRS UMR5068, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, 31062 Toulouse cedex 9, France
| | - Catherine Claparols
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Marc Vedrenne
- Institut de Chimie de Toulouse, Université Toulouse 3 Paul Sabatier, ICT-FR CNRS 2599, 31062 Toulouse France
| | - Dominique Goudounèche
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Bruno Payré
- CMEAB Université Toulouse III - Paul Sabatier, 133 Route de Narbonne, 31062 Toulouse cedex, France
| | - Beatrice Lucia Bona
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Alice Tosi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Luigi Mancinelli 7, 20131 Milan, Italy
| | - Patricia Vicendo
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Vincent Lapinte
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Barbara Lonetti
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| | - Laure Gibot
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 31062 Toulouse, France.
| |
Collapse
|
3
|
Wu Q, Niu M, Zhou C, Wang Y, Xu J, Shi L, Xiong H, Feng N. Formation and detection of biocoronas in the food industry and their fate in the human body. Food Res Int 2023; 174:113566. [PMID: 37986519 DOI: 10.1016/j.foodres.2023.113566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
The rapid advancement of nanotechnology has opened up new avenues for applications in all stages of the food industry. Over the past decade, extensive research has emphasized that when nanoparticles (NPs) enter organisms, they spontaneously adsorbed biomolecules, leading to the formation of biocorona. This paper provided a detailed review of the process of biocorona formation in the food industry, including their classification and influencing factors. Additionally, various characterization methods to investigated the morphology and structure of biocoronas were introduced. As a real state of food industry nanoparticles in biological environments, the biocorona causes structural transformations of biomolecules bound to NPs, thus affecting their fate in the body. It can either promote or inhibit enzyme activity in the human environment, and may also positively or negatively affect the cellular uptake and toxicity of NPs. Since NPs present in the food industry will inevitably enter the human body, further investigations on biocoronas will offer valuable insights and perspectives on the safety of incorporating more NPs into the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Mengyao Niu
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Chen Zhou
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yaxiong Wang
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jianhua Xu
- Pinyuan (Suizhou) Modern Agriculture Development Co., LTD., Suizhou, Hubei 441300, China
| | - Lin Shi
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - He Xiong
- Wuhan Caidian District Public Inspection and Testing Center, Wuhan, Hubei 430100, China
| | - Nianjie Feng
- Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China.
| |
Collapse
|
4
|
Zhao Y, Li Y, Wang F, Gan X, Zheng T, Chen M, Wei L, Chen J, Yu C. CES1-Triggered Liver-Specific Cargo Release of CRISPR/Cas9 Elements by Cationic Triadic Copolymeric Nanoparticles Targeting Gene Editing of PCSK9 for Hyperlipidemia Amelioration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300502. [PMID: 37083231 DOI: 10.1002/advs.202300502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The broad application of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing tools is hindered by challenges in the efficient delivery of its two components into specific cells and intracytoplasmic release. Herein, a novel copolymer for delivery of Cas9-mRNA/ single-guide RNA (Cas9-mRNA/sgRNA) in vitro and vivo, using carboxylesterase-responsive cationic triadic copolymeric nanoparticles targeted proprotein convertase subtilisin/kexin type 9 (PCSK9) for hyperlipidemia amelioration is reported. A dimethyl biguanide derivative is designed and synthesized to form cationic block, and copolymerization onto prepolymer with propyl methacrylate, to fabricate a triadic copolymer mPEG-b-P(Met/n-PMA). The copolymer can self-assemble with Cas9-mRNA/sgRNA, indicating the excellent potential of nanoparticles to form a delivery carrier. This vehicle can efficiently release RNA in response to the hepatocytes carboxylesterase for genome editing. It was demonstrated that the mPEG-b-P(Met/n-PMA)/Cas9 mRNA/sgRNA nanoparticles effectively accumulated in hepatocytes, lead to the inhibition of PCSK9, and lowered the levels of Low-density lipoprotein cholesterol and total cholesterol in mouse serum down 20% of nontreatment. Interestingly, the nanoparticles even enable multiple functions in the regulation of blood glucose and weight. This study establishes a novel method to achieve complex CRISPR components stable loading, safe delivery, and fixed-point release, which expand the application of CRISPR delivery systems.
Collapse
Affiliation(s)
- Yunfei Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yun Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Fan Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xuelan Gan
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Tianye Zheng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Mengyue Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jun Chen
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
5
|
Huang W, Xiao G, Zhang Y, Min W. Research progress and application opportunities of nanoparticle-protein corona complexes. Biomed Pharmacother 2021; 139:111541. [PMID: 33848776 DOI: 10.1016/j.biopha.2021.111541] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles (NPs) can be used to design for nanomedicines with different chemical surface properties owing to their size advantages and the capacity of specific delivery to targeted sites in organisms. The discovery of the presence of protein corona (PC) has changed our classical view of NPs, stimulating researchers to investigate the in vivo fate of NPs as they enter biological systems. Both NPs and PC have their specificity but complement each other, so they should be considered as a whole. The formation and characterization of NP-PC complexes provide new insights into the design, functionalization, and application of nanocarriers. Based on progress of recent researches, we reviewed the formation, characterization, and composition of the PC, and introduced those critical factors influencing PC, simultaneously expound the effect of PC on the biological function of NPs. Especially we put forward the opportunities and challenges when NP-PC as a novel nano-drug carrier for targeted applications. Furthermore, we discussed the pros versus cons of the PC, as well as how to make better PC in the future application of NPs.
Collapse
Affiliation(s)
- Wei Huang
- Department of Pharmacy, The First People's Hospital of Jiande, Jiande 311600, China; Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Gao Xiao
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China
| | - Yujuan Zhang
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China.
| | - Weiping Min
- Department of immunology, School of Basic Medical Sciences and School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
6
|
Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv Transl Res 2020; 10:730-750. [DOI: 10.1007/s13346-020-00745-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|