1
|
Muthwill MS, Bina M, Paracini N, Coats JP, Merget S, Yorulmaz Avsar S, Messmer D, Tiefenbacher K, Palivan CG. Planar Polymer Membranes Accommodate Functional Self-Assembly of Inserted Resorcinarene Nanocapsules. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422470 DOI: 10.1021/acsami.3c18687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Solid-supported polymer membranes (SSPMs) offer great potential in material and life sciences due to their increased mechanical stability and robustness compared to solid-supported lipid membranes. However, there is still a need for expanding the functionality of SSPMs by combining them with synthetic molecular assemblies. In this study, SSPMs served as a flexible matrix for the insertion of resorcinarene monomers and their self-assembly into functional hexameric resorcinarene capsules. Resorcinarene capsules provide a large cavity with affinity specifically for cationic and polyhydroxylated molecules. While the capsules are stable in apolar organic solvents, they disassemble when placed in polar solvents, which limits their application. Here, a solvent-assisted approach was used for copolymer membrane deposition on solid support and simultaneous insertion of the resorcinarene monomers. By investigation of the molecular factors and conditions supporting the codeposition of the copolymer and resorcinarene monomers, a stable hybrid membrane was formed. The hydrophobic domain of the membrane played a crucial role by providing a sufficiently thick and apolar layer, allowing for the self-assembly of the capsules. The capsules were functional inside the membranes by encapsulating cationic guests from the aqueous environment. The amount of resorcinarene capsules in the hybrid membranes was quantified by a combination of quartz-crystal microbalance with dissipation and liquid chromatography-mass spectrometry, while the membrane topography and layer composition were analyzed by atomic force microscopy and neutron reflectometry. Functional resorcinarene capsules inside SSPMs can serve as dynamic sensors and potentially as cross-membrane transporters, thus holding great promise for the development of smart surfaces.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| | - Maryame Bina
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Nicolò Paracini
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - John Peter Coats
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Severin Merget
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Saziye Yorulmaz Avsar
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Daniel Messmer
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Konrad Tiefenbacher
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Biointerfacing Nanomaterials Group, Department of Chemistry, University of Basel, Mattenstrasse 22, BPR 1096, 4058 Basel, Switzerland
- NCCR Molecular Systems Engineering, Mattenstrasse 22, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
2
|
Maffeis V, Hürlimann D, Krywko-Cendrowska A, Schoenenberger CA, Housecroft CE, Palivan CG. A DNA-Micropatterned Surface for Propagating Biomolecular Signals by Positional on-off Assembly of Catalytic Nanocompartments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202818. [PMID: 35869606 DOI: 10.1002/smll.202202818] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Signal transduction is pivotal for the transfer of information between and within living cells. The composition and spatial organization of specified compartments are key to propagating soluble signals. Here, a high-throughput platform mimicking multistep signal transduction which is based on a geometrically defined array of immobilized catalytic nanocompartments (CNCs) that consist of distinct polymeric nanoassemblies encapsulating enzymes and DNA or enzymes alone is presented. The dual role of single entities or tandem CNCs in providing confined but communicating spaces for complex metabolic reactions and in protecting encapsulated compounds from denaturation is explored. To support a controlled spatial organization of CNCs, CNCs are patterned by means of DNA hybridization to a microprinted glass surface. Specifically, CNC-functionalized DNA microarrays are produced where individual reaction compartments are kept in close proximity by a distinct geometrical arrangement to promote effective communication. Besides a remarkable versatility and robustness, the most prominent feature of this platform is the reversibility of DNA-mediated CNC-anchoring which renders it reusable. Micropatterns of polymer-based nanocompartment assemblies offer an ideal scaffold for the development of the next generation responsive and communicative soft-matter analytical devices for applications in catalysis and medicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Agata Krywko-Cendrowska
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
- NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, Basel, CH-4058, Switzerland
| |
Collapse
|
3
|
Di Leone S, Kyropoulou M, Köchlin J, Wehr R, Meier WP, Palivan CG. Tailoring a Solvent-Assisted Method for Solid-Supported Hybrid Lipid-Polymer Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6561-6570. [PMID: 35580858 PMCID: PMC9161443 DOI: 10.1021/acs.langmuir.2c00204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Combining amphiphilic block copolymers and phospholipids opens new opportunities for the preparation of artificial membranes. The chemical versatility and mechanical robustness of polymers together with the fluidity and biocompatibility of lipids afford hybrid membranes with unique properties that are of great interest in the field of bioengineering. Owing to its straightforwardness, the solvent-assisted method (SA) is particularly attractive for obtaining solid-supported membranes. While the SA method was first developed for lipids and very recently extended to amphiphilic block copolymers, its potential to develop hybrid membranes has not yet been explored. Here, we tailor the SA method to prepare solid-supported polymer-lipid hybrid membranes by combining a small library of amphiphilic diblock copolymers poly(dimethyl siloxane)-poly(2-methyl-2-oxazoline) and poly(butylene oxide)-block-poly(glycidol) with phospholipids commonly found in cell membranes including 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, sphingomyelin, and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl). The optimization of the conditions under which the SA method was applied allowed for the formation of hybrid polymer-lipid solid-supported membranes. The real-time formation and morphology of these hybrid membranes were evaluated using a combination of quartz crystal microbalance and atomic force microscopy. Depending on the type of polymer-lipid combination, significant differences in membrane coverage, formation of domains, and quality of membranes were obtained. The use of the SA method for a rapid and controlled formation of solid-supported hybrid membranes provides the basis for developing customized artificial hybrid membranes.
Collapse
Affiliation(s)
- Stefano Di Leone
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School
of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland
(FHNW), Grundenstrasse
40, 4132 Muttenz, Switzerland
| | - Myrto Kyropoulou
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Centre of Competence in Research Molecular Systems Engineering (NCCR
MSE), BPR 1095, Mattenstrasse
24a, 4058 Basel, Switzerland
| | - Julian Köchlin
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang P. Meier
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Centre of Competence in Research Molecular Systems Engineering (NCCR
MSE), BPR 1095, Mattenstrasse
24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department
of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- National
Centre of Competence in Research Molecular Systems Engineering (NCCR
MSE), BPR 1095, Mattenstrasse
24a, 4058 Basel, Switzerland
| |
Collapse
|
4
|
Zhao Y, Song Q, Lin Y, Chu F, Wei Y, Liu S, Pan C, Quan L, Wang Y. Improving the photostability of fluorescent dyes by polymer nano‐insulating layer. J Appl Polym Sci 2022. [DOI: 10.1002/app.51625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingshi Zhao
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Qinyong Song
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Yuebin Lin
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Feng Chu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences Nanjing University Nanjing China
| | - Yanchun Wei
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Sen Liu
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Changjiang Pan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Li Quan
- Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices Huaiyin Institute of Technology Huai'an Jiangsu People's Republic of China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences Nanjing University Nanjing China
| |
Collapse
|
5
|
Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: A review on nanostructures, processes, properties, and applications. Carbohydr Polym 2021; 272:118472. [PMID: 34420731 DOI: 10.1016/j.carbpol.2021.118472] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 01/30/2023]
Abstract
Chitosan is a biopolymer that is natural, biodegradable, and relatively low price. Chitosan has been attracting interest as a matrix of nanocomposites due to new properties for various applications. This study presents a comprehensive overview of common and recent advances using chitosan as a nanocomposite matrix. The focus is to present alternative processes to produce embedded or coated nanoparticles, and the shaping techniques that have been employed (3D printing, electrospinning), as well as the nanocomposites emerging applications in medicine, tissue engineering, wastewater treatment, corrosion inhibition, among others. There are several reviews about single chitosan material and derivatives for diverse applications. However, there is not a study that focuses on chitosan as a nanocomposite matrix, explaining the possibility of nanomaterial additions, the interaction of the attached species, and the applications possibility following the techniques to combine chitosan with nanostructures. Finally, future directions are presented for expanding the applications of chitosan nanocomposites.
Collapse
Affiliation(s)
- Angelo Oliveira Silva
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Ricardo Sousa Cunha
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Dachamir Hotza
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Ricardo Antonio Francisco Machado
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
6
|
Sun H, Wang Y, Song J. Polymer Vesicles for Antimicrobial Applications. Polymers (Basel) 2021; 13:2903. [PMID: 34502943 PMCID: PMC8434374 DOI: 10.3390/polym13172903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic membrane, have shown significant potentials in biomedical applications including drug delivery, gene therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incorporation with antibacterial active components like antimicrobial peptides, etc., polymer vesicles exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Furthermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of antimicrobial polymer vesicles, including the design strategies and potential applications in the field of antibacterial. The structural features of polymer vesicles, preparation methods, and the combination principles with antimicrobial active components, as well as the advantages of antimicrobial polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated with their structure features are presented. Finally, future perspectives of polymer vesicles in the field of antibacterial is also proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China;
| |
Collapse
|
7
|
De Mel JU, Gupta S, Willner L, Allgaier J, Stingaciu LR, Bleuel M, Schneider GJ. Manipulating Phospholipid Vesicles at the Nanoscale: A Transformation from Unilamellar to Multilamellar by an n-Alkyl-poly(ethylene oxide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2362-2375. [PMID: 33570419 PMCID: PMC8023706 DOI: 10.1021/acs.langmuir.0c03302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Indexed: 05/05/2023]
Abstract
We investigated the influence of an n-alkyl-PEO polymer on the structure and dynamics of phospholipid vesicles. Multilayer formation and about a 9% increase in the size in vesicles were observed by cryogenic transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and small-angle neutron/X-ray scattering (SANS/SAXS). The results indicate a change in the lamellar structure of the vesicles by a partial disruption caused by polymer chains, which seems to correlate with about a 30% reduction in bending rigidity per unit bilayer, as revealed by neutron spin echo (NSE) spectroscopy. Also, a strong change in lipid tail relaxation was observed. Our results point to opportunities using synthetic polymers to control the structure and dynamics of membranes, with possible applications in technical materials and also in drug and nutraceutical delivery.
Collapse
Affiliation(s)
- Judith U. De Mel
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudipta Gupta
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Lutz Willner
- Jülich
Center for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Jürgen Allgaier
- Jülich
Center for Neutron Science (JCNS-1) and Institute of Biological Information
Processing (IBI-8) Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Laura R. Stingaciu
- Neutron
Sciences Directorate, Oak Ridge National
Laboratory (ORNL), POB 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Markus Bleuel
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, Gaithersburg, Maryland 20899-8562, United States
| | - Gerald J. Schneider
- Department
of Chemistry and Department of Physics & Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Miller A, Pearce AK, Foster JC, O’Reilly RK. Probing and Tuning the Permeability of Polymersomes. ACS CENTRAL SCIENCE 2021; 7:30-38. [PMID: 33532567 PMCID: PMC7844851 DOI: 10.1021/acscentsci.0c01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 05/19/2023]
Abstract
Polymersomes are a class of synthetic vesicles composed of a polymer membrane surrounding an aqueous inner cavity. In addition to their overall size, the thickness and composition of polymersome membranes determine the range of potential applications in which they can be employed. While synthetic polymer chemists have made great strides in controlling polymersome membrane parameters, measurement of their permeability to various analytes including gases, ions, organic molecules, and macromolecules remains a significant challenge. In this Outlook, we compare the general methods that have been developed to quantify polymersome membrane permeability, focusing in particular on their capability to accurately measure analyte flux. In addition, we briefly highlight strategies to control membrane permeability. Based on these learnings, we propose a set of criteria for designing future methods of quantifying membrane permeability such that the passage of a variety of molecules into and out of their lumens can be better understood.
Collapse
|
9
|
The chemistry of cross-linked polymeric vesicles and their functionalization towards biocatalytic nanoreactors. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractSelf-assembly of amphiphilic block copolymers into polymersomes continues to be a hot topic in modern research on biomimetics. Their well-known and valued mechanical strength can be increased even further if they are cross-linked. These additional bonds prevent a collapse or disassembly of the polymersomes and open the way towards smart nanoreactors. A variety of chemistries have been applied to obtain the desired cross-linked polymersomes, and therefore, the chemical approaches performed over time will be highlighted in this mini-review. Due to the large number of studies, a selected set of photo-cross-linked and pH-sensitive polymersomes will be specifically highlighted. This system has proven to be a very potent candidate for the formation of nanoreactors and drug delivery systems, and even for the formation of functional multicompartment cell mimics.
Collapse
|
10
|
Di Leone S, Avsar SY, Belluati A, Wehr R, Palivan CG, Meier W. Polymer–Lipid Hybrid Membranes as a Model Platform to Drive Membrane–Cytochrome c Interaction and Peroxidase-like Activity. J Phys Chem B 2020; 124:4454-4465. [DOI: 10.1021/acs.jpcb.0c02727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Stefano Di Leone
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
- School of Life Sciences, Institute for Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland (FHNW), Grundenstrasse 40, 4132 Muttenz, Switzerland
| | - Saziye Yorulmaz Avsar
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Andrea Belluati
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Riccardo Wehr
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Wolfgang Meier
- Chemistry Department, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
11
|
Krywko-Cendrowska A, di Leone S, Bina M, Yorulmaz-Avsar S, Palivan CG, Meier W. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers (Basel) 2020; 12:E1003. [PMID: 32357541 PMCID: PMC7285097 DOI: 10.3390/polym12051003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| |
Collapse
|
12
|
Rigo S, Hürlimann D, Marot L, Malmsten M, Meier W, Palivan CG. Decorating Nanostructured Surfaces with Antimicrobial Peptides to Efficiently Fight Bacteria. ACS APPLIED BIO MATERIALS 2020; 3:1533-1543. [DOI: 10.1021/acsabm.9b01154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Serena Rigo
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| | - Laurent Marot
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Department of Physical Chemistry 1, Lund University, SE-221 00 Lund, Sweden
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4002 Basel, Switzerland
| |
Collapse
|