1
|
Choi YK, Kim TH, Jung BK, Park T, Lee YM, Oh S, Choi HJ, Park J, Bae SI, Lee Y, Shim JW, Park HY, Oh SJ. High-Performance Self-Powered Quantum Dot Infrared Photodetector with Azide Ion Solution Treated Electron Transport Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308375. [PMID: 38073328 DOI: 10.1002/smll.202308375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Indexed: 05/03/2024]
Abstract
The demand for self-powered photodetectors (PDs) capable of NIR detection without external power is growing with the advancement of NIR technologies such as LIDAR and object recognition. Lead sulfide quantum dot-based photodetectors (PbS QPDs) excel in NIR detection; however, their self-powered operation is hindered by carrier traps induced by surface defects and unfavorable band alignment in the zinc oxide nanoparticle (ZnO NP) electron-transport layer (ETL). In this study, an effective azide-ion (N3 -) treatment is introduced on a ZnO NP ETL to reduce the number of traps and improve the band alignment in a PbS QPD. The ZnO NP ETL treated with azide ions exhibited notable improvements in carrier lifetime and mobility as well as an enhanced internal electric field within the thin-film heterojunction of the ZnO NPs and PbS QDs. The azide-ion-treated PbS QPD demonstrated a increase in short-circuit current density upon NIR illumination, marking a responsivity of 0.45 A W-1, specific detectivity of 4 × 1011 Jones at 950 nm, response time of 8.2 µs, and linear dynamic range of 112 dB.
Collapse
Affiliation(s)
- Young Kyun Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Tae Hyuk Kim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taesung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yong Min Lee
- Department of Semiconductor Systems Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seongkeun Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung Jin Choi
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junhyeok Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-In Bae
- Samsung Electronics Co. Ltd, Yongin-si, 17113, Republic of Korea
| | - YunKi Lee
- Samsung Electronics Co. Ltd, Yongin-si, 17113, Republic of Korea
| | - Jae Won Shim
- School of Electrical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hye Yeon Park
- Samsung Electronics Co. Ltd, Yongin-si, 17113, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Seo SE, Kim KH, Ha S, Oh H, Kim J, Kim S, Kim L, Seo M, An JE, Park YM, Lee KG, Kim YK, Kim WK, Hong JJ, Song HS, Kwon OS. Synchronous Diagnosis of Respiratory Viruses Variants via Receptonics Based on Modeling Receptor-Ligand Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303079. [PMID: 37487578 DOI: 10.1002/adma.202303079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/19/2023] [Indexed: 07/26/2023]
Abstract
The transmission and pathogenesis of highly contagious fatal respiratory viruses are increasing, and the need for an on-site diagnostic platform has arisen as an issue worldwide. Furthermore, as the spread of respiratory viruses continues, different variants have become the dominant circulating strains. To prevent virus transmission, the development of highly sensitive and accurate on-site diagnostic assays is urgently needed. Herein, a facile diagnostic device is presented for multi-detection based on the results of detailed receptor-ligand dynamics simulations for the screening of various viral strains. The novel bioreceptor-treated electronics (receptonics) device consists of a multichannel graphene transistor and cell-entry receptors conjugated to N-heterocyclic carbene (NHC). An ultrasensitive multi-detection performance is achieved without the need for sample pretreatment, which will enable rapid diagnosis and prevent the spread of pathogens. This platform can be applied for the diagnosis of variants of concern in clinical respiratory virus samples and primate models. This multi-screening platform can be used to enhance surveillance and discriminate emerging virus variants before they become a severe threat to public health.
Collapse
Affiliation(s)
- Sung Eun Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung Ho Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Hanseul Oh
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jinyeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soomin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jai Eun An
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoo Min Park
- Center for NanoBio Development, National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Podhorská B, Chylíková-Krumbholcová E, Dvořáková J, Šlouf M, Kobera L, Pop-Georgievski O, Frejková M, Proks V, Janoušková O, Filipová M, Chytil P. Soft Hydrogels with Double Porosity Modified with RGDS for Tissue Engineering. Macromol Biosci 2024; 24:e2300266. [PMID: 37821117 DOI: 10.1002/mabi.202300266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.
Collapse
Affiliation(s)
- Bohumila Podhorská
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Eva Chylíková-Krumbholcová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Jana Dvořáková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Libor Kobera
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Markéta Frejková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Olga Janoušková
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Marcela Filipová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského náměstí 2, Prague 6, 162 06, Czech Republic
| |
Collapse
|
4
|
Walkowiak A, Wolski L, Ziolek M. The influence of ferrocene anchoring method on the reactivity and stability of SBA-15-based catalysts in the degradation of ciprofloxacin via photo-Fenton process. RSC Adv 2023; 13:8360-8373. [PMID: 36926012 PMCID: PMC10012415 DOI: 10.1039/d3ra00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
The study is aimed at evaluation of the impact of ferrocene (Fc) anchoring method on the efficiency of its incorporation on the surface of mesoporous silica SBA-15, as well as the reactivity and stability of these hybrid organic-inorganic materials in degradation of ciprofloxacin (CIP) via photocatalytic, Fenton and photo-Fenton processes. For this purpose, Fc was anchored on SBA-15 supports via three different methods: (i) Schiff base formation, (ii) Friedel-Crafts alkylation, and (iii) click reaction (azide-alkyne cycloaddition). The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, infrared spectroscopy and inductively coupled plasma optical emission spectrometry, as well as UV-visible and X-ray photoelectron spectroscopies. The highest efficiency of Fc anchoring was obtained when applying the Friedel-Crafts alkylation, while the least effective was the Schiff base formation. As concerns the catalysts activity, all materials exhibited negligible reactivity in the photocatalytic process, but were capable of degrading CIP in the presence of H2O2 (Fenton process). For all materials, the highest efficiency of CIP removal was observed for the photo-Fenton reaction. When expressed as the activity of a single Fc site, the most reactive were Fc species from the catalyst prepared by the click reaction. All materials, irrespectively of the ferrocene anchoring method, were deactivating over the reaction time because of Fc leaching. The highest stability in three subsequent reaction cycles was observed for the catalyst prepared by the azide-alkyne cycloaddition. Thus, the click reaction was found to be the best method for the preparation of Fc-containing catalysts for CIP degradation.
Collapse
Affiliation(s)
- Adrian Walkowiak
- Adam Mickiewicz University, Poznań, Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Lukasz Wolski
- Adam Mickiewicz University, Poznań, Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| | - Maria Ziolek
- Adam Mickiewicz University, Poznań, Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-614 Poznań Poland
| |
Collapse
|
5
|
Schulte A, de Los Santos Pereira A, Pola R, Pop-Georgievski O, Jiang S, Romanenko I, Singh M, Sedláková Z, Schönherr H, Poręba R. On-Demand Cell Sheet Release with Low Density Peptide-Functionalized Non-LCST Polymer Brushes. Macromol Biosci 2023; 23:e2200472. [PMID: 36598869 DOI: 10.1002/mabi.202200472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Cell sheet harvesting offers a great potential for the development of new therapies for regenerative medicine. For cells to adhere onto surfaces, proliferate, and to be released on demand, thermoresponsive polymeric coatings are generally considered to be required. Herein, an alternative approach for the cell sheet harvesting and rapid release on demand is reported, circumventing the use of thermoresponsive materials. This approach is based on the end-group biofunctionalization of non-thermoresponsive and antifouling poly(2-hydroxyethyl methacrylate) (p(HEMA)) brushes with cell-adhesive peptide motifs. While the nonfunctionalized p(HEMA) surfaces are cell-repellant, ligation of cell-signaling ligand enables extensive attachment and proliferation of NIH 3T3 fibroblasts until the formation of a confluent cell layer. Remarkably, the formed cell sheets can be released from the surfaces by gentle rinsing with cell-culture medium. The release of the cells is found to be facilitated by low surface density of cell-adhesive peptides, as confirmed by X-ray photoelectron spectroscopy. Additionally, the developed system affords possibility for repeated cell seeding, proliferation, and release on previously used substrates without any additional pretreatment steps. This new approach represents an alternative to thermally triggered cell-sheet harvesting platforms, offering possibility of capture and proliferation of various rare cell lines via appropriate selection of the cell-adhesive ligand.
Collapse
Affiliation(s)
- Anna Schulte
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Andres de Los Santos Pereira
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Siyu Jiang
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Iryna Romanenko
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Manisha Singh
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Zdeňka Sedláková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology University of Siegen, Adolf-Reichwein-Str. 2, 57076, Siegen, Germany
| | - Rafał Poręba
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovsky sq. 2, Prague, 162 06, Czech Republic
| |
Collapse
|
6
|
Cellot G, Jacquemin L, Reina G, Franceschi Biagioni A, Fontanini M, Chaloin O, Nishina Y, Bianco A, Ballerini L. Bonding of Neuropeptide Y on Graphene Oxide for Drug Delivery Applications to the Central Nervous System. ACS APPLIED NANO MATERIALS 2022; 5:17640-17651. [PMID: 36583122 PMCID: PMC9791619 DOI: 10.1021/acsanm.2c03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/21/2022] [Indexed: 05/20/2023]
Abstract
Nanoscale graphene-based materials (GBMs) enable targeting subcellular structures of the nervous system, a feature crucial for the successful engineering of alternative nanocarriers to deliver drugs and to treat neurodisorders. Among GBMs, graphene oxide (GO) nanoflakes, showing good dispersibility in water solution and being rich of functionalizable oxygen groups, are ideal core structures for carrying biological active molecules to the brain, such as the neuropeptide Y (NPY). In addition, when unconjugated, these nanomaterials have been reported to modulate neuronal function per se. Although some GBM-based nanocarriers have been tested both in vitro and in vivo, a thorough characterization of covalent binding impact on the biological properties of the carried molecule and/or of the nanomaterial is still missing. Here, a copper(I)-catalyzed alkyne-azide cycloaddition strategy was employed to synthesize the GO-NPY complex. By investigating through electrophysiology the impact of these conjugates on the activity of hippocampal neurons, we show that the covalent modification of the nanomaterial, while making GO an inert platform for the vectorized delivery, enhances the duration of NPY pharmacological activity. These findings support the future use of GO for the development of smart platforms for nervous system drug delivery.
Collapse
Affiliation(s)
- Giada Cellot
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Lucas Jacquemin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Giacomo Reina
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | | | - Mario Fontanini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| | - Olivier Chaloin
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Yuta Nishina
- Graduate
School of Natural Science and Technology and Research Core for Interdisciplinary
Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama700-8530, Japan
| | - Alberto Bianco
- CNRS,
Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University
of Strasbourg ISIS, 67000Strasbourg, France
| | - Laura Ballerini
- International
School for Advanced Studies, SISSA, Via Bonomea n. 265, 34136Trieste, Italy
| |
Collapse
|
7
|
Ming H, Tian C, He N, Zhao X, Luo F, Li Z, Li J, Tan H, Fu Q. Mussel-inspired polyurethane coating for bio-surface functionalization to enhance substrate adhesion and cell biocompatibility. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1811-1827. [PMID: 35648635 DOI: 10.1080/09205063.2022.2085342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Considerable implant materials are prone to cause a severe inflammatory reaction due to poor histocompatibility, which leads to various complications and implant failure. Surface coating modification of these implant materials is one of the most important techniques to settle this problem. However, fabricating a coating with both adequate adhesiveness and excellent biocompatibility remains a challenge. Inspired by the adhesion mechanism of mussels, a series of mussel-inspired polyurethanes (PU-LDAs) were synthysized through a step growth polymerization based on hexamethylene diisocyanate as a hard segment, polytetra-methylene-ether-glycol as a soft segment, lysine-dopamine (LDA) and butanediol as chain extenders with different mole ratios.The coatings of PU-LDAs were applied to various substrates, such as stainless steel, glass and PP using a facile one-step coating process. The introduction of 3,4-dihydroxyphenylalanine (DOPA) groups can greatly improve the adhesion ability of the coatings to the substrates demonstrated by a 180° peel test. The peel strength of the PU-LDA100 coating containing high LDA content was 76.3, 48.5 and 67.5 N/m, which was 106.2%, 246.4% and 192.2% higher than that of the PU-LDA00 coating without LDA on the surface of stainless steel, glass and PP, respectively. Meanwhile, this PU coating has a lower immune inflammatory response which provides a universal method for surface modification of implant materials. Moreover, the DOPA groups in PU-LDAs could combine with the amino and thiol groups on cell membrane surface, leading to the improvement of cell adhesion and growth. Therefore, it has great potential application in the field of biomedical implant materials for the clinic.
Collapse
Affiliation(s)
- Hao Ming
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - ChenXu Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Nan He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Xin Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Xie T, Brady A, Velarde C, Vaccarello DN, Callahan NW, Marino JP, Orski SV. Selective C-Terminal Conjugation of Protease-Derived Native Peptides for Proteomic Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9119-9128. [PMID: 35856835 DOI: 10.1021/acs.langmuir.2c00359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bottom-up proteomic experiments often require selective conjugation or labeling of the N- and/or C-termini of peptides resulting from proteolytic digestion. For example, techniques based on surface fluorescence imaging are emerging as a promising route to high-throughput protein sequencing but require the generation of peptide surface arrays immobilized through single C-terminal point attachment while leaving the N-terminus free. While several robust approaches are available for selective N-terminal conjugation, it has proven to be much more challenging to implement methods for selective labeling or conjugation of the C-termini that can discriminate between the C-terminal carboxyl group and other carboxyl groups on aspartate and glutamate residues. Further, many approaches based on conjugation through amide bond formation require protection of the N-terminus to avoid unwanted cross-linking reactions. To overcome these challenges, herein, we describe a new strategy for single-point selective immobilization of peptides generated by protease digestion via the C-terminus. The method involves immobilization of peptides via lysine amino acids which are found naturally at the C-terminal end of cleaved peptides from digestions of certain serine endoproteinases, like LysC. This lysine and the N-terminus, the sole two primary amines in the peptide fragments, are chemically reacted with a custom phenyl isothiocyanate (EPITC) that contains an alkyne handle. Subsequent exposure of the double-modified peptides to acid selectively cleaves the N-terminal amino acid, while the modified C-terminus lysine remains unchanged. The alkyne-modified peptides with free N-termini can then be immobilized on an azide surface through standard click chemistry. Using this general approach, surface functionalization is demonstrated using a combination of X-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM).
Collapse
Affiliation(s)
- Tian Xie
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
- Georgetown University, Washington, District of Columbia, 20057, United States
| | - Alexandria Brady
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Cecilia Velarde
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - David N Vaccarello
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Nicholas W Callahan
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - John P Marino
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
- University of Maryland - Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850, United States
| | - Sara V Orski
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
9
|
Collagen conjugation to carboxyl-modified poly(3-hydroxybutyrate) microparticles: preparation, characterization and evaluation in vitro. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Smenda J, Wolski K, Chajec K, Zapotoczny S. Preparation of Homopolymer, Block Copolymer, and Patterned Brushes Bearing Thiophene and Acetylene Groups Using Microliter Volumes of Reaction Mixtures. Polymers (Basel) 2021; 13:4458. [PMID: 34961009 PMCID: PMC8704565 DOI: 10.3390/polym13244458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
The synthesis of surface-grafted polymers with variable functionality requires the careful selection of polymerization methods that also enable spatially controlled grafting, which is crucial for the fabrication of, e.g., nano (micro) sensor or nanoelectronic devices. The development of versatile, simple, economical, and eco-friendly synthetic strategies is important for scaling up the production of such polymer brushes. We have recently shown that poly (3-methylthienyl methacrylate) (PMTM) and poly (3-trimethylsilyl-2-propynyl methacrylate) (PTPM) brushes with pendant thiophene and acetylene groups, respectively, could be used for the production of ladder-like conjugated brushes that are potentially useful in the mentioned applications. However, the previously developed syntheses of such brushes required the use of high volumes of reagents, elevated temperature, or high energy UV-B light. Therefore, we present here visible light-promoted metal-free surface-initiated ATRP (metal-free SI-ATRP) that allows the economical synthesis of PMTM and PTPM brushes utilizing only microliter volumes of reaction mixtures. The versatility of this approach was shown by the formation of homopolymers but also the block copolymer conjugated brushes (PMTM and PTPM blocks in both sequences) and patterned films using TEM grids serving as photomasks. A simple reaction setup with only a monomer, solvent, commercially available organic photocatalyst, and initiator decorated substrate makes the synthesis of these complex polymer structures achievable for non-experts and ready for scaling up.
Collapse
Affiliation(s)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (J.S.); (K.C.); (S.Z.)
| | | | | |
Collapse
|
11
|
Zou Y, Lu K, Lin Y, Wu Y, Wang Y, Li L, Huang C, Zhang Y, Brash JL, Chen H, Yu Q. Dual-Functional Surfaces Based on an Antifouling Polymer and a Natural Antibiofilm Molecule: Prevention of Biofilm Formation without Using Biocides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45191-45200. [PMID: 34519474 DOI: 10.1021/acsami.1c10747] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathogenic biofilms formed on the surfaces of implantable medical devices and materials pose an urgent global healthcare problem. Although conventional antibacterial surfaces based on bacteria-repelling or bacteria-killing strategies can delay biofilm formation to some extent, they usually fail in long-term applications, and it remains challenging to eradicate recalcitrant biofilms once they are established and mature. From the viewpoint of microbiology, a promising strategy may be to target the middle stage of biofilm formation including the main biological processes involved in biofilm development. In this work, a dual-functional antibiofilm surface is developed based on copolymer brushes of 2-hydroxyethyl methacrylate (HEMA) and 3-(acrylamido)phenylboronic acid (APBA), with quercetin (Qe, a natural antibiofilm molecule) incorporated via acid-responsive boronate ester bonds. Due to the antifouling properties of the hydrophilic poly(HEMA) component, the resulting surface is able to suppress bacterial adhesion and aggregation in the early stages of contact. A few bacteria are eventually able to break through the protection of the anti-adhesion layer leading to bacterial colonization. In response to the resulting decrease in the pH of the microenvironment, the surface could then release Qe to interfere with the microbiological processes related to biofilm formation. Compared to bactericidal and anti-adhesive surfaces, this dual-functional surface showed significantly improved antibiofilm performance to prevent biofilm formation involving both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus for up to 3 days. In addition, both the copolymer and Qe are negligibly cytotoxic, thereby avoiding possible harmful effects on adjacent normal cells and the risk of bacterial resistance. This dual-functional design approach addresses the different stages of biofilm formation, and (in accordance with the growth process of the biofilm) allows sequential activation of the functions without compromising the viability of adjacent normal cells. A simple and reliable solution may thus be provided to the problems associated with biofilms on surfaces in various biomedical applications.
Collapse
Affiliation(s)
- Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Luohuizi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215007, P. R. China
| | - John L Brash
- School of Biomedical Engineering and Department of Chemical Engineering, McMaster University, Hamilton L8S4L7, Canada
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
12
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Choi H, Schulte A, Müller M, Park M, Jo S, Schönherr H. Drug Release from Thermo-Responsive Polymer Brush Coatings to Control Bacterial Colonization and Biofilm Growth on Titanium Implants. Adv Healthc Mater 2021; 10:e2100069. [PMID: 33951320 PMCID: PMC11481028 DOI: 10.1002/adhm.202100069] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Despite decades of biomedical advances, the colonization of implant devices with bacterial biofilms is still a leading cause of implant failure. Clearly, new strategies and materials that suppress both initial and later stage bacterial colonization are required in this context. Ideal would be the implementation of a bactericidal functionality in the implants that is temporally and spatially triggered in an autonomous fashion at the infection site. Herein, the fabrication and validation of functional titanium-based implants with triggered antibiotic release function afforded via an intelligent polymer coating is reported. In particular, thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) brushes on titanium implants synthesized via a surface-initiated atom transfer radical polymerization with activators regenerated through the electron transfer technique (ARGET ATRP) allows for a controlled and thermally triggered release of the antibiotic levofloxacin at the wound site. Antibiotic loaded brushes are investigated as a function of thickness, loading capacity for antibiotics, and temperature. At temperatures of the infection site >37 °C the lower critical solution temperature behavior of the brushes afforded the triggered release. Hence, in addition to the known antifouling effects, the PDEGMA coating ensured enhanced bactericidal effects, as demonstrated in initial in vivo tests with rodents infected with Staphylococcus aureus.
Collapse
Affiliation(s)
- Hongsuh Choi
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| | - Anna Schulte
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| | - Mineon Park
- Seoul National University Hospital Biomedical Research InstituteSeoul03080Republic of Korea
| | - Suenghwan Jo
- Department of Orthopaedic SurgerySchool of MedicineChosun University365 PilmundaeroGwangju61453Republic of Korea
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)Department of Chemistry and BiologySchool of Science and TechnologyUniversity of SiegenAdolf‐Reichwein‐Str. 2Siegen57076Germany
| |
Collapse
|
14
|
Straub AJ, Scherag FD, Kim HI, Steiner MS, Brandstetter T, Rühe J. "CHicable" and "Clickable" Copolymers for Network Formation and Surface Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6510-6520. [PMID: 34003660 DOI: 10.1021/acs.langmuir.1c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we present the generation of novel, multifunctional polymer networks through a combination of C,H-insertion cross-linking (CHic) and click chemistry. To this, copolymers consisting of hydrophilic N,N-dimethylacrylamide as matrix component and repeat units containing azide moieties, as well as benzophenone or anthraquinone groups, are generated. The benzophenone or anthraquinone groups allow photo-cross-linking, surface attachment or covalent immobilization of adjacent (bio)molecules through CHic reactions. The azide moieties either can react with available alkynes through conventional click reactions or can be activated to form nitrenes, which can also undergo CHic reactions. By choosing appropriate reaction conditions, the same polymer can be used to follow very different reaction paths, opening up a plethora of choices for the generation of functional polymer networks. In the exemplary presented case ("CHic-Click"), irradiation of the copolymers with UV-A light (λirr = 365 nm) leads to cross-linking (network formation) and surface attachment simultaneously. The azide units remain intact during this cross-linking step, and alkyne-modified (bio)molecules can be bound through click reactions. Biofunctionalization of the polymer network with alkynylated streptavidin, followed by application of biotin-conjugated antibody and a model analyte, highlights the potential of these surface architectures as a toolbox which can be adapted for diverse bioanalytical applications.
Collapse
Affiliation(s)
- Alexander J Straub
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Frank D Scherag
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Hye In Kim
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Mark-Steven Steiner
- Microcoat Biotechnologie GmbH, Am Neuland 3, 82347 Bernried am Starnberger See, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
15
|
Synthesis of end group-functionalized PGMA-peptide brush platforms for specific cell attachment by interface-mediated dissociative electron transfer reversible addition-fragmentation chain transfer radical (DET-RAFT) polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater 2021; 126:45-62. [PMID: 33727195 DOI: 10.1016/j.actbio.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Bioactive surfaces modified with functional peptides are critical for both fundamental research and practical application of implant materials and tissue repair. However, when bioactive molecules are tethered on biomaterial surfaces, their functions can be compromised due to unwanted fouling (mainly nonspecific protein adsorption and cell adhesion). In recent years, researchers have continuously studied antifouling strategies to obtain low background noise and effectively present the function of bioactive molecules. In this review, we describe several commonly used antifouling strategies and analyzed their advantages and drawbacks. Among these strategies, antifouling molecules are widely used to construct the antifouling layer of various bioactive surfaces. Subsequently, we summarize various structures of antifouling molecules and their surface grafting methods and characteristics. Application of these functionalized surfaces in microarray, biosensors, and implants are also introduced. Finally, we discuss the primary challenges associated with antifouling layers in fabricating bioactive surfaces and provide prospects for the future development of this field. STATEMENT OF SIGNIFICANCE: The nonspecific protein adsorption and cell adhesion will cause unwanted background "noise" on the surface of biological materials and detecting devices and compromise the performance of functional molecules and, therefore, impair the performance of materials and the sensitivity of devices. In addition, the selection of antifouling surfaces with proper chain length and high grafting density is also of great importance and requires further studies. Otherwise, the surface-tethered bioactive molecules may not function in their optimal status or even fail to display their functions. Based on these two critical issues, we summarize antifouling molecules with different structures, variable grafting methods, and diverse applications in biomaterials and biomedical devices reported in literature. Overall, we expect to shed some light on choosing the appropriate antifouling molecules in fabricating bioactive surfaces.
Collapse
|
17
|
Słowikowska M, Chajec K, Michalski A, Zapotoczny S, Wolski K. Surface-Initiated Photoinduced Iron-Catalyzed Atom Transfer Radical Polymerization with ppm Concentration of FeBr 3 under Visible Light. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5139. [PMID: 33202639 PMCID: PMC7697009 DOI: 10.3390/ma13225139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Reversible deactivation radical polymerizations with reduced amount of organometallic catalyst are currently a field of interest of many applications. One of the very promising techniques is photoinduced atom transfer radical polymerization (photo-ATRP) that is mainly studied for copper catalysts in the solution. Recently, advantageous iron-catalyzed photo-ATRP (photo-Fe-ATRP) compatible with high demanding biological applications was presented. In response to that, we developed surface-initiated photo-Fe-ATRP (SI-photo-Fe-ATRP) that was used for facile synthesis of poly(methyl methacrylate) brushes with the presence of only 200 ppm of FeBr3/tetrabutylammonium bromide catalyst (FeBr3/TBABr) under visible light irradiation (wavelength: 450 nm). The kinetics of both SI-photo-Fe-ATRP and photo-Fe-ATRP in solution were compared and followed by 1H NMR, atomic force microscopy (AFM) and gel permeation chromatography (GPC). Brush grafting densities were determined using two methodologies. The influence of the sacrificial initiator on the kinetics of brush growth was studied. It was found that SI-photo-Fe-ATRP could be effectively controlled even without any sacrificial initiators thanks to in situ production of ATRP initiator in solution as a result of reaction between the monomer and Br radicals generated in photoreduction of FeBr3/TBABr. The optimized and simplified reaction setup allowed synthesis of very thick (up to 110 nm) PMMA brushes at room temperature, under visible light with only 200 ppm of iron-based catalyst. The same reaction conditions, but with the presence of sacrificial initiator, enabled formation of much thinner layers (18 nm).
Collapse
Affiliation(s)
- Monika Słowikowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Kamila Chajec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Adam Michalski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (K.C.); (A.M.); (S.Z.)
| |
Collapse
|
18
|
Sivkova R, Táborská J, Reparaz A, de los Santos Pereira A, Kotelnikov I, Proks V, Kučka J, Svoboda J, Riedel T, Pop-Georgievski O. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Int J Mol Sci 2020; 21:ijms21186800. [PMID: 32947982 PMCID: PMC7554689 DOI: 10.3390/ijms21186800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide “click” reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
Collapse
|
19
|
Roeven E, Kuzmyn AR, Scheres L, Baggerman J, Smulders MMJ, Zuilhof H. PLL-Poly(HPMA) Bottlebrush-Based Antifouling Coatings: Three Grafting Routes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10187-10199. [PMID: 32820926 PMCID: PMC7498161 DOI: 10.1021/acs.langmuir.0c01675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
In this work, we compare three routes to prepare antifouling coatings that consist of poly(l-lysine)-poly(N-(2-hydroxypropyl)methacrylamide) bottlebrushes. The poly(l-lysine) (PLL) backbone is self-assembled onto the surface by charged-based interactions between the lysine groups and the negatively charged silicon oxide surface, whereas the poly(N-(2-hydroxypropyl)methacrylamide) [poly(HPMA)] side chains, grown by reversible addition-fragmentation chain-transfer (RAFT) polymerization, provide antifouling properties to the surface. First, the PLL-poly(HPMA) coatings are synthesized in a bottom-up fashion through a grafting-from approach. In this route, the PLL is self-assembled onto a surface, after which a polymerization agent is immobilized, and finally HPMA is polymerized from the surface. In the second explored route, the PLL is modified in solution by a RAFT agent to create a macroinitiator. After self-assembly of this macroinitiator onto the surface, poly(HPMA) is polymerized from the surface by RAFT. In the third and last route, the whole PLL-poly(HPMA) bottlebrush is initially synthesized in solution. To this end, HPMA is polymerized from the macroinitiator in solution and the PLL-poly(HPMA) bottlebrush is then self-assembled onto the surface in just one step (grafting-to approach). Additionally, in this third route, we also design and synthesize a bottlebrush polymer with a PLL backbone and poly(HPMA) side chains, with the latter containing 5% carboxybetaine (CB) monomers that eventually allow for additional (bio)functionalization in solution or after surface immobilization. These three routes are evaluated in terms of ease of synthesis, scalability, ease of characterization, and a preliminary investigation of their antifouling performance. All three coating procedures result in coatings that show antifouling properties in single-protein antifouling tests. This method thus presents a new, simple, versatile, and highly scalable approach for the manufacturing of PLL-based bottlebrush coatings that can be synthesized partly or completely on the surface or in solution, depending on the desired production process and/or application.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Andriy R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Luc Scheres
- Surfix
BV, Bronland 12 B-1, 6708 WH Wageningen, The Netherlands
| | - Jacob Baggerman
- Aquamarijn
Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department
of Chemical and Materials Engineering, King
Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Víšová I, Smolková B, Uzhytchak M, Vrabcová M, Chafai DE, Houska M, Pastucha M, Skládal P, Farka Z, Dejneka A, Vaisocherová-Lísalová H. Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery. Biomolecules 2020; 10:biom10081146. [PMID: 32764330 PMCID: PMC7464033 DOI: 10.3390/biom10081146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
Collapse
Affiliation(s)
- Ivana Víšová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Barbora Smolková
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Mariia Uzhytchak
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Markéta Vrabcová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Djamel Eddine Chafai
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Milan Houska
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (M.P.); (P.S.)
- Correspondence: (Z.F.); (H.V.-L.); Tel.: +420-549497674 (Z.F.); +420-266052993 (H.V.-L.)
| | - Alexandr Dejneka
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
| | - Hana Vaisocherová-Lísalová
- Institute of Physics CAS, Na Slovance 1999/2, 182 21 Prague, Czech Republic; (I.V.); (B.S.); (M.U.); (M.V.); (D.E.C.); (M.H.); (A.D.)
- Correspondence: (Z.F.); (H.V.-L.); Tel.: +420-549497674 (Z.F.); +420-266052993 (H.V.-L.)
| |
Collapse
|
21
|
Mei S, Wilk JT, Chancellor AJ, Zhao B, Li CY. Fabrication of 2D Block Copolymer Brushes via a Polymer-Single-Crystal-Assisted-Grafting-to Method. Macromol Rapid Commun 2020; 41:e2000228. [PMID: 32608541 DOI: 10.1002/marc.202000228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/25/2020] [Indexed: 11/08/2022]
Abstract
Block copolymer brushes are of great interest due to their rich phase behavior and value-added properties compared to homopolymer brushes. Traditional synthesis involves grafting-to and grafting-from methods. In this work, a recently developed "polymer-single-crystal-assisted-grafting-to" method is applied for the preparation of block copolymer brushes on flat glass surfaces. Triblock copolymer poly(ethylene oxide)-b-poly(l-lactide)-b-poly(3-(triethoxysilyl)propyl methacrylate) (PEO-b-PLLA-b-PTESPMA) is synthesized with PLLA as the brush morphology-directing component and PTESPMA as the anchoring block. PEO-b-PLLA block copolymer brushes are obtained by chemical grafting of the triblock copolymer single crystals onto a glass surface. The tethering point and overall brush pattern are determined by the single crystal morphology. The grafting density is calculated to be ≈0.36 nm-2 from the atomic force microscopy results and is consistent with the theoretic calculation based on the PLLA crystalline lattice. This work provides a new strategy to synthesize well-defined block copolymer brushes.
Collapse
Affiliation(s)
- Shan Mei
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Jeffrey T Wilk
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | | | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|