1
|
Morimoto N, Ota K, Miura Y, Shin H, Yamamoto M. Sulfobetaine polymers for effective permeability into multicellular tumor spheroids (MCTSs). J Mater Chem B 2022; 10:2649-2660. [PMID: 35024722 DOI: 10.1039/d1tb02337c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicellular tumor spheroids (MCTSs) are attractive for drug screening before animal tests because they emulate an in vivo microenvironment. The permeability of the MCTSs and tumor tissues towards the candidate drugs is not sufficient even though the drugs can penetrate monolayer cultured cells; therefore, nanocarriers are required to enhance permeability and deliver drugs. In this study, we prepared zwitterionic polymers of sulfobetaine methacrylates and (meth)acrylamides with or without hydroxy groups between the zwitterions to serve as highly permeable nanocarriers. In the sulfobetaine polymers, poly(2-hydroxy-3-((3-methacrylamidopropyl)dimethylammonio)propane-1-sulfonate), P(OH-MAAmSB), the hydroxy group containing methacrylamide polymer exhibited little cytotoxicity and membrane translocation ability against monolayer cultured cells. Moreover, the excellent permeability of the hepatocyte MCTS enabled P(OH-MAAmSB) to permeate it and reach the center region (∼325 μm in diameter) at approximately 150 s, although poly(trimethyl-2-methacroyloxyethylammonium), a cationic polymer, penetrated just 1 to 2 layers from the periphery. The superior permeability of P(OH-MAAmSB) might be due to its good solubility and side chain conformation. P(OH-MAAmSB) is a promising nanocarrier with membrane translocation and permeability.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Keisuke Ota
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Yuki Miura
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea.,BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan. .,Graduate School of Medical Engineering, Tohoku University, 6-6-12 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Nakayama M, Kanno T, Takahashi H, Kikuchi A, Yamato M, Okano T. Terminal cationization of poly( N-isopropylacrylamide) brush surfaces facilitates efficient thermoresponsive control of cell adhesion and detachment. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:481-493. [PMID: 34211335 PMCID: PMC8221160 DOI: 10.1080/14686996.2021.1929464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A variety of poly(N-isopropylacrylamide) (PIPAAm)-grafted surfaces have been reported for temperature-controlled cell adhesion/detachment. However, the surfaces reported to date need further improvement to achieve good outcomes for both cell adhesion and detachment, which are inherently contradictory behaviors. This study investigated the effects of terminal cationization and length of grafted PIPAAm chains on temperature-dependent cell behavior. PIPAAm brushes with three chain lengths were constructed on glass coverslips via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. Terminal substitution of the grafted PIPAAm chains with either monocationic trimethylammonium or nonionic isopropyl moieties was performed through the reduction of terminal RAFT-related groups and subsequent thiol-ene reaction with the corresponding acrylamide derivatives. Although the thermoresponsive properties of the PIPAAm brush surfaces were scarcely affected by the terminal functional moiety, the zeta potentials of the cationized PIPAAm surfaces were higher than those of the nonionized ones, both below and above the phase transition temperature of PIPAAm (30°C). When bovine endothelial cells were cultured on each surface at 37°C, the number of adherent cells decreased with longer PIPAAm. Notably, cell adhesion on the cationized PIPAAm surfaces was higher than that on the nonionized surfaces. This terminal effect on cell adhesion gradually weakened with increasing PIPAAm length. In particular, long-chain PIPAAm brushes virtually showed cell repellency even at 37°C, regardless of the termini. Interestingly, moderately long-chain PIPAAm brushes promoted cell detachment at 20°C, with negligible terminal electrostatic interruption. Consequently, both cell adhesion and detachment were successfully improved by choosing an appropriate PIPAAm length with terminal cationization.
Collapse
Affiliation(s)
- Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku, Japan
| | - Tomonori Kanno
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku, Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, Katsushika, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku, Japan
| |
Collapse
|