1
|
Di Girolamo N. Biologicals and Biomaterials for Corneal Regeneration and Vision Restoration in Limbal Stem Cell Deficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401763. [PMID: 38777343 DOI: 10.1002/adma.202401763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The mammalian cornea is decorated with stem cells bestowed with the life-long task of renewing the epithelium, provided they remain healthy, functional, and in sufficient numbers. If not, a debilitating disease known as limbal stem cell deficiency (LSCD) can develop causing blindness. Decades after the first stem cell (SC) therapy is devised to treat this condition, patients continue to suffer unacceptable failures. During this time, improvements to therapeutics have included identifying better markers to isolate robust SC populations and nurturing them on crudely modified biological or biomaterial scaffolds including human amniotic membrane, fibrin, and contact lenses, prior to their delivery. Researchers are now gathering information about the biomolecular and biomechanical properties of the corneal SC niche to decipher what biological and/or synthetic materials can be incorporated into these carriers. Advances in biomedical engineering including electrospinning and 3D bioprinting with surface functionalization and micropatterning, and self-assembly models, have generated a wealth of biocompatible, biodegradable, integrating scaffolds to choose from, some of which are being tested for their SC delivery capacity in the hope of improving clinical outcomes for patients with LSCD.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Mechanisms of Disease and Translational Research, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Wang M, Li Y, Wang H, Li M, Wang X, Liu R, Zhang D, Xu W. Corneal regeneration strategies: From stem cell therapy to tissue engineered stem cell scaffolds. Biomed Pharmacother 2023; 165:115206. [PMID: 37494785 DOI: 10.1016/j.biopha.2023.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Corneal epithelial defects and excessive wound healing might lead to severe complications. As stem cells can self-renew infinitely, they are a promising solution for regenerating the corneal epithelium and treating severe corneal epithelial injury. The chemical and biophysical properties of biological scaffolds, such as the amniotic membrane, fibrin, and hydrogels, can provide the necessary signals for stem cell proliferation and differentiation. Multiple researchers have conducted investigations on these scaffolds and evaluated them as potential therapeutic interventions for corneal disorders. These studies have identified various inherent benefits and drawbacks associated with these scaffolds. In this study, we provided a comprehensive overview of the history and use of various stem cells in corneal repair. We mainly discussed biological scaffolds that are used in stem cell transplantation and innovative materials that are under investigation.
Collapse
Affiliation(s)
- Mengyuan Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Ying Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Hongqiao Wang
- Blood Purification Department, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, Shandong 266071, PR China
| | - Meng Li
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Xiaomin Wang
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Rongzhen Liu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Daijun Zhang
- Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
3
|
The progress in techniques for culturing human limbal epithelial stem cells. Hum Cell 2023; 36:1-14. [PMID: 36181663 DOI: 10.1007/s13577-022-00794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/11/2022] [Indexed: 01/07/2023]
Abstract
In vitro culture of human limbal epithelial stem cells (hLESCs) is crucial to cell therapy in the treatment of limbal stem cell deficiency, a potentially vision-threatening disease that is characterized by persistent corneal epithelial defects and corneal epithelium conjunctivalization. Traditionally, hLESCs are cultivated based on either limbal tissue explants or single-cell suspensions in culture media containing xenogenous components, such as fetal bovine serum and murine 3T3 feeder cells. Plastic culture dishes and human amniotic membranes are classical growth substrates used in conventional hLESC culture systems. The past few decades have witnessed considerable progress and innovations in hLESC culture techniques to ensure a higher level of biosafety and lower immunogenicity for further cell treatment, including complete removal of xenogenous components from culture media, the application of human-derived feeder cells, and the development of novel scaffolds. Three-dimensional artificial niches and three-dimensional culture techniques have also been established to simulate the real microenvironment of limbal crypts for better cell outgrowth and proliferation. All these progresses ensure that in vitro cultured hLESCs are more adaptable to translational stem cell therapy for limbal stem cell deficiency.
Collapse
|
4
|
Ying PX, Fu M, Huang C, Li ZH, Mao QY, Fu S, Jia XH, Cao YC, Hong LB, Cai LY, Guo X, Liu RB, Meng FK, Yi GG. Profile of biological characterizations and clinical application of corneal stem/progenitor cells. World J Stem Cells 2022; 14:777-797. [PMID: 36483848 PMCID: PMC9724387 DOI: 10.4252/wjsc.v14.i11.777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal stem/progenitor cells are typical adult stem/progenitor cells. The human cornea covers the front of the eyeball, which protects the eye from the outside environment while allowing vision. The location and function demand the cornea to maintain its transparency and to continuously renew its epithelial surface by replacing injured or aged cells through a rapid turnover process in which corneal stem/progenitor cells play an important role. Corneal stem/progenitor cells include mainly corneal epithelial stem cells, corneal endothelial cell progenitors and corneal stromal stem cells. Since the discovery of corneal epithelial stem cells (also known as limbal stem cells) in 1971, an increasing number of markers for corneal stem/progenitor cells have been proposed, but there is no consensus regarding the definitive markers for them. Therefore, the identification, isolation and cultivation of these cells remain challenging without a unified approach. In this review, we systematically introduce the profile of biological characterizations, such as anatomy, characteristics, isolation, cultivation and molecular markers, and clinical applications of the three categories of corneal stem/progenitor cells.
Collapse
Affiliation(s)
- Pei-Xi Ying
- Department of Ophthalmology, Zhujiang Hospital, The Second Clinical School, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200030, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai 200030, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200030, China
| | - Zhi-Hong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Lab of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510550, Guangdong Province, China
| | - Qing-Yi Mao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng Fu
- Hengyang Medical School, The University of South China, Hengyang 421001, Hunan Province, China
| | - Xu-Hui Jia
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Yu-Chen Cao
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Bing Hong
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Li-Yang Cai
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xi Guo
- Medical College of Rehabilitation, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ru-Bing Liu
- The Second Clinical School, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Fan-ke Meng
- Emergency Department, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Guo-Guo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
5
|
Chain-End Functionalization of Poly(ε-caprolactone) for Chemical Binding with Gelatin: Binary Electrospun Scaffolds with Improved Physico-Mechanical Characteristics and Cell Adhesive Properties. Polymers (Basel) 2022; 14:polym14194203. [PMID: 36236153 PMCID: PMC9570970 DOI: 10.3390/polym14194203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Composite biocompatible scaffolds, obtained using the electrospinning (ES) technique, are highly promising for biomedical application thanks to their high surface area, porosity, adjustable fiber diameter, and permeability. However, the combination of synthetic biodegradable (such as poly(ε-caprolactone) PCL) and natural (such as gelatin Gt) polymers is complicated by the problem of low compatibility of the components. Previously, this problem was solved by PCL grafting and/or Gt cross-linking after ES molding. In the present study, composite fibrous scaffolds consisting of PCL and Gt were fabricated by the electrospinning (ES) method using non-functionalized PCL1 or NHS-functionalized PCL2 and hexafluoroisopropanol as a solvent. To provide covalent binding between PCL2 and Gt macromolecules, NHS-functionalized methyl glutarate was synthesized and studied in model reactions with components of spinning solution. It was found that selective formation of amide bonds, which provide complete covalent bonding of Gt in PCL/Gt composite, requires the presence of weak acid. With the use of the optimized ES method, fibrous mats with different PCL/Gt ratios were prepared. The sample morphology (SEM), hydrolytic resistance (FT-IR), cell adhesion and viability (MTT assay), cell penetration (fluorescent microscopy), and mechanical characteristics of the samples were studied. PCL2-based films with a Gt content of 20 wt% have demonstrated the best set of properties.
Collapse
|
6
|
Tan Y, Chen D, Wang Y, Wang W, Xu L, Liu R, You C, Li G, Zhou H, Li D. Limbal Bio-engineered Tissue Employing 3D Nanofiber-Aerogel Scaffold to Facilitate LSCs Growth and Migration. Macromol Biosci 2022; 22:e2100441. [PMID: 35020979 DOI: 10.1002/mabi.202100441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Constrained by the existing scaffold inability to mimic limbal niche, limbal bio-engineered tissue constructed in vitro is challenging to be widely used in clinical practice. Here, 3D nanofiber-aerogel scaffold was fabricated by employing thermal cross-linking electrospinned film Polycaprolactone (PCL) and gelatin (GEL) as the precursor. Benefiting from the cross-linked (160°C, vacuum) structure, the homogenized and lyophilized 3D nanofiber-aerogel scaffold with preferable mechanical strength was capable of refraining the volume collapse in humid vitro. Intriguingly, compared with traditional electrospinning scaffolds, our 3D nanofiber-aerogel scaffolds possessed enhanced water absorption (1100%-1300%), controllable aperture (50-100 μm) and excellent biocompatibility (optical density value, 0.953 ± 0.021). The well-matched aperture and nanostructure of the scaffolds with cells enabled the construction of limbal bio-engineered tissue. It is foreseen that the proposed general method could be extended to various aerogels, providing new opportunities for the development of novel limbal bio-engineered tissue. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yongyao Tan
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Chen
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yunming Wang
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wang
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lingjuan Xu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rong Liu
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chunxiu You
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guigang Li
- Y. Tan, W. Wang, L. Xu, R. Liu, C. You, G. Li, Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huamin Zhou
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dequn Li
- D. Chen, Y. Wang, H. Zhou, D. Li, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|