1
|
Uram Ł, Twardowska M, Szymaszek Ż, Misiorek M, Łyskowski A, Setkowicz Z, Rauk Z, Wołowiec S. The Importance of Biotinylation for the Suitability of Cationic and Neutral Fourth-Generation Polyamidoamine Dendrimers as Targeted Drug Carriers in the Therapy of Glioma and Liver Cancer. Molecules 2024; 29:4293. [PMID: 39339289 PMCID: PMC11434373 DOI: 10.3390/molecules29184293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
In this study, we hypothesized that biotinylated and/or glycidol-flanked fourth-generation polyamidoamine (PAMAM G4) dendrimers could be a tool for efficient drug transport into glioma and liver cancer cells. For this purpose, native PAMAM (G4) dendrimers, biotinylated (G4B), glycidylated (G4gl), and biotinylated and glycidylated (G4Bgl), were synthesized, and their cytotoxicity, uptake, and accumulation in vitro and in vivo were studied in relation to the transport mediated by the sodium-dependent multivitamin transporter (SMVT). The studies showed that the human temozolomide-resistant glioma cell line (U-118 MG) and hepatocellular carcinoma cell line (HepG2) indicated a higher amount of SMVT than human HaCaT keratinocytes (HaCaTs) used as a model of normal cells. The G4gl and G4Bgl dendrimers were highly biocompatible in vitro (they did not affect proliferation and mitochondrial activity) against HaCaT and U-118 MG glioma cells and in vivo (against Caenorhabditis elegans and Wistar rats). The studied compounds penetrated efficiently into all studied cell lines, but inconsistently with the uptake pattern observed for biotin and disproportionately for the level of SMVT. G4Bgl was taken up and accumulated after 48 h to the highest degree in glioma U-118 MG cells, where it was distributed in the whole cell area, including the nuclei. It did not induce resistance symptoms in glioma cells, unlike HepG2 cells. Based on studies on Wistar rats, there are indications that it can also penetrate the blood-brain barrier and act in the central nervous system area. Therefore, it might be a promising candidate for a carrier of therapeutic agents in glioma therapy. In turn, visualization with a confocal microscope showed that biotinylated G4B penetrated efficiently into the body of C. elegans, and it may be a useful vehicle for drugs used in anthelmintic therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Magdalena Twardowska
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Żaneta Szymaszek
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Maria Misiorek
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Andrzej Łyskowski
- The Faculty of Chemistry, Rzeszow University of Technology, Powstańców Warszawy 6 Ave., 35-959 Rzeszow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| | - Zuzanna Rauk
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
2
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Racovita S, Trofin MA, Vasiliu AL, Avadanei M, Loghin DF, Mihai M, Vasiliu S. Studies on Sorption and Release of Doxycycline Hydrochloride from Zwitterionic Microparticles with Carboxybetaine Moieties. Int J Mol Sci 2024; 25:7871. [PMID: 39063114 PMCID: PMC11277556 DOI: 10.3390/ijms25147871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of this study was to examine the use of zwitterionic microparticles as new and efficient macromolecular supports for the sorption of an antibiotic (doxycycline hydrochloride, DCH) from aqueous solution. The effect of relevant process parameters of sorption, like dosage of microparticles, pH value, contact time, the initial concentration of drug and temperature, was evaluated to obtain the optimal experimental conditions. The sorption kinetics were investigated using Lagergren, Ho, Elovich and Weber-Morris models, respectively. The sorption efficiency was characterized by applying the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) show that the sorption of doxycycline hydrochloride onto zwitterionic microparticles is endothermic, spontaneous and favorable at higher temperatures. The maximum identified sorption capacity value is 157.860 mg/g at 308 K. The Higuchi, Korsmeyer-Peppas, Baker-Lonsdale and Kopcha models are used to describe the release studies. In vitro release studies show that the release mechanism of doxycycline hydrochloride from zwitterionic microparticles is predominantly anomalous or non-Fickian diffusion. This study could provide the opportunity to expand the use of these new zwitterionic structures in medicine and water purification.
Collapse
Affiliation(s)
- Stefania Racovita
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (M.-A.T.); (A.-L.V.); (M.A.); (D.F.L.); (M.M.); (S.V.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Karthika V, Jo SH, Yadav S, Reddy OS, Lim HG, Lee WK, Park SH, Lim KT. Self-Signal-Triggered Drug Delivery System for Tumor Therapy Using Cancer Cell Membrane-Coated Biocompatible Mn 3O 4 Nanocomposites. Adv Biol (Weinh) 2024; 8:e2300375. [PMID: 38548666 DOI: 10.1002/adbi.202300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/22/2024] [Indexed: 06/16/2024]
Abstract
In anti-cancer metastasis treatment, precise drug delivery to cancer cells remains a challenge. Innovative nanocomposites are developed to tackle these issues effectively. The approach involves the creation of manganese oxide (Mn3O4) nanoparticles (NPs) and their functionalization using trisodium citrate to yield functionalized Mn3O4 NPs (F-Mn3O4 NPs), with enhanced water solubility, stability, and biocompatibility. Subsequently, the chemotherapeutic drug doxorubicin (DOX) is encapsulated with Mn3O4 NPs, resulting in DOX/Mn3O4 NPs. To achieve cell-specific targeting, These NPs are coated with HeLa cell membranes (HCM), forming HCM/DOX/Mn3O4. For further refinement, a transferrin (Tf) receptor is integrated with cracked HCM to create Tf-HCM/DOX/Mn3O4 nanocomposites (NC) with specific cell membrane targeting capabilities. The resulting Tf-HCM/DOX/Mn3O4 NC exhibits excellent drug encapsulation efficiency (97.5%) and displays triggered drug release when exposed to NIR laser irradiation in the tumor's environment (pH 5.0 and 6.5). Furthermore, these nanocomposites show resistance to macrophage uptake and demonstrate homotypic cancer cell targeting specificity, even in the presence of other tumor cells. In vitro toxicity tests show that Tf-HCM/DOX/Mn3O4 NC achieves significant anticancer activity against HeLa and BT20 cancer cells, with percentages of 76.46% and 71.36%, respectively. These results indicate the potential of Tf-HCM/DOX/Mn3O4 NC as an effective nanoplatform for chemo-photothermal therapy.
Collapse
Affiliation(s)
- Viswanathan Karthika
- Department of Display Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, South Korea
| | | | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Won-Ki Lee
- Department of Polymer Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, South Korea
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan, 48513, South Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513, South Korea
| |
Collapse
|
5
|
Vishwakarma M, Agrawal P, Soni S, Tomar S, Haider T, Kashaw SK, Soni V. Cationic nanocarriers: A potential approach for targeting negatively charged cancer cell. Adv Colloid Interface Sci 2024; 327:103160. [PMID: 38663154 DOI: 10.1016/j.cis.2024.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cancer, a widespread and lethal disease, necessitates precise therapeutic interventions to mitigate its devastating impact. While conventional chemotherapy remains a cornerstone of cancer treatment, its lack of specificity towards cancer cells results in collateral damage to healthy tissues, leading to adverse effects. Thus, the quest for targeted strategies has emerged as a critical focus in cancer research. This review explores the development of innovative targeting methods utilizing novel drug delivery systems tailored to recognize and effectively engage cancer cells. Cancer cells exhibit morphological and metabolic traits, including irregular morphology, unchecked proliferation, metabolic shifts, genetic instability, and a higher negative charge, which serve as effective targeting cues. Central to these strategies is the exploitation of the unique negative charge characteristic of cancer cells, attributed to alterations in phospholipid composition and the Warburg effect. Leveraging this distinct feature, researchers have devised cationic carrier systems capable of enhancing the specificity of therapeutic agents towards cancer cells. The review delineates the underlying causes of the negative charge in cancer cells and elucidates various targeting approaches employing cationic compounds for drug delivery systems. Furthermore, it delves into the methods employed for the preparation of these systems. Beyond cancer treatment, the review also underscores the multifaceted applications of cationic carrier systems, encompassing protein and peptide delivery, imaging, photodynamic therapy, gene delivery, and antimicrobial applications. This comprehensive exploration underscores the potential of cationic carrier systems as versatile tools in the fight against cancer and beyond.
Collapse
Affiliation(s)
- Monika Vishwakarma
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Poornima Agrawal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Surbhi Tomar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India; Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, MP, India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India.
| |
Collapse
|
6
|
Wang J, Wang Z, Zhang G, Rodrigues J, Tomás H, Shi X, Shen M. Blood-brain barrier-crossing dendrimers for glioma theranostics. Biomater Sci 2024; 12:1346-1356. [PMID: 38362780 DOI: 10.1039/d4bm00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Glioma, as a disease of the central nervous system, is difficult to be treated due to the presence of the blood-brain barrier (BBB) that can severely hamper the efficacy of most therapeutic agents. Hence, drug delivery to glioma in an efficient, safe, and specifically targeted manner is the key to effective treatment of glioma. With the advances in nanotechnology, targeted drug delivery systems have been extensively explored to deliver chemotherapeutic agents, nucleic acids, and contrast agents. Among these nanocarriers, dendrimers have played a significant role since they possess highly branched structures, and are easy to be decorated, thus offering numerous binding sites for various drugs and ligands. Dendrimers can be designed to cross the BBB for glioma targeting, therapy or theranostics. In this review, we provide a concise overview of dendrimer-based carrier designs including dendrimer surface modification with hydroxyl termini, peptides, and transferrin etc. for glioma imaging diagnostics, chemotherapy, gene therapy, or imaging-guided therapy. Finally, the future perspectives of dendrimer-based glioma theraputics are also briefly discussed.
Collapse
Affiliation(s)
- Jinxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Guixiang Zhang
- Department of Radiology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Funchal 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Abdoullateef BMT, El-Din Al-Mofty S, Azzazy HME. Nanoencapsulation of general anaesthetics. NANOSCALE ADVANCES 2024; 6:1361-1373. [PMID: 38419874 PMCID: PMC10898439 DOI: 10.1039/d3na01012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
General anaesthetics are routinely used to sedate patients during prolonged surgeries and administered via intravenous injection and/or inhalation. All anaesthetics have short half-lives, hence the need for their continuous administration. This causes several side effects such as pain, vomiting, nausea, bradycardia, and on rare occasions death post-administration. Several clinical trials studied the synergetic effect of a combination of anaesthetic drugs to reduce the drug load. Another solution is to encapsulate anaesthetics in nanoparticles to reduce their dose and side effects as well as achieve their sustained release manner. Different types of nanoparticles were developed as carriers of intravenous and intrathecal anaesthetics generating platforms which facilitate drug transport across the blood-brain barrier (BBB). Nanocarriers encapsulating common anaesthetic drugs such as propofol, etomidate, and ketamine were developed and characterized in terms of size, stability, onset and duration of loss of right reflex, and tolerance to pain in small animal models. The review discusses the types of nanocarriers used to reduce the side effects of the anaesthetic drugs while prolonging the sedation time. More rigorous studies are still required to evaluate the nanocarrier formulations regarding their ability to deliver anaesthetic drugs across the BBB, safety, and finally applicability in clinical settings.
Collapse
Affiliation(s)
- Basma M T Abdoullateef
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo, AUC Avenue, SSE # 1184, P.O. Box 74 Cairo 11835 Egypt +20 226152559
| | - Saif El-Din Al-Mofty
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo, AUC Avenue, SSE # 1184, P.O. Box 74 Cairo 11835 Egypt +20 226152559
| | - Hassan M E Azzazy
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo New Cairo, AUC Avenue, SSE # 1184, P.O. Box 74 Cairo 11835 Egypt +20 226152559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
8
|
Bellavita R, Braccia S, Falanga A, Galdiero S. An Overview of Supramolecular Platforms Boosting Drug Delivery. Bioinorg Chem Appl 2023; 2023:8608428. [PMID: 38028018 PMCID: PMC10661875 DOI: 10.1155/2023/8608428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Numerous supramolecular platforms inspired by natural self-assembly are exploited as drug delivery systems. The spontaneous arrangement of single building blocks into inorganic and organic structures is determined and controlled by noncovalent forces such as electrostatic interactions, π-π interactions, hydrogen bonds, and van der Waals interactions. This review describes the main structures and characteristics of several building blocks used to obtain stable, self-assembling nanostructures tailored for numerous biological applications. Owing to their versatility, biocompatibility, and controllability, these nanostructures find application in diverse fields ranging from drug/gene delivery, theranostics, tissue engineering, and nanoelectronics. Herein, we described the different approaches used to design and functionalize these nanomaterials to obtain selective drug delivery in a specific disease. In particular, the review highlights the efficiency of these supramolecular structures in applications related to infectious diseases and cancer.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| | - Simone Braccia
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples ‘Federico II', Portici 80055, Italy
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples ‘Federico II', Naples 80131, Italy
| |
Collapse
|
9
|
Niazi SK. Non-Invasive Drug Delivery across the Blood-Brain Barrier: A Prospective Analysis. Pharmaceutics 2023; 15:2599. [PMID: 38004577 PMCID: PMC10674293 DOI: 10.3390/pharmaceutics15112599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Non-invasive drug delivery across the blood-brain barrier (BBB) represents a significant advancement in treating neurological diseases. The BBB is a tightly packed layer of endothelial cells that shields the brain from harmful substances in the blood, allowing necessary nutrients to pass through. It is a highly selective barrier, which poses a challenge to delivering therapeutic agents into the brain. Several non-invasive procedures and devices have been developed or are currently being investigated to enhance drug delivery across the BBB. This paper presents a review and a prospective analysis of the art and science that address pharmacology, technology, delivery systems, regulatory approval, ethical concerns, and future possibilities.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
11
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
12
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|
13
|
Gaitsch H, Hersh AM, Alomari S, Tyler BM. Dendrimer Technology in Glioma: Functional Design and Potential Applications. Cancers (Basel) 2023; 15:1075. [PMID: 36831418 PMCID: PMC9954563 DOI: 10.3390/cancers15041075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Novel therapeutic and diagnostic methods are sorely needed for gliomas, which contribute yearly to hundreds of thousands of cancer deaths worldwide. Despite the outpouring of research efforts and funding aimed at improving clinical outcomes for patients with glioma, the prognosis for high-grade glioma, and especially glioblastoma, remains dire. One of the greatest obstacles to improving treatment efficacy and destroying cancer cells is the safe delivery of chemotherapeutic drugs and biologics to the tumor site at a high enough dose to be effective. Over the past few decades, a burst of research has leveraged nanotechnology to overcome this obstacle. There has been a renewed interest in adapting previously understudied dendrimer nanocarriers for this task. Dendrimers are small, highly modifiable, branched structures featuring binding sites for a variety of drugs and ligands. Recent studies have demonstrated the potential for dendrimers and dendrimer conjugates to effectively shuttle therapeutic cargo to the correct tumor location, permeate the tumor, and promote apoptosis of tumor cells while minimizing systemic toxicity and damage to surrounding healthy brain tissue. This review provides a primer on the properties of dendrimers; outlines the mechanisms by which they can target delivery of substances to the site of brain pathology; and delves into current trends in the application of dendrimers to drug and gene delivery, and diagnostic imaging, in glioma. Finally, future directions for translating these in vitro and in vivo findings to the clinic are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Zenze M, Daniels A, Singh M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. Pharmaceutics 2023; 15:398. [PMID: 36839720 PMCID: PMC9961584 DOI: 10.3390/pharmaceutics15020398] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The formulation of nanoscale systems with well-defined sizes and shapes is of great interest in applications such as drug and gene delivery, diagnostics and imaging. Dendrimers are polymers that have attracted interest due to their size, shape, branching length, amine density, and surface functionalities. These unique characteristics of dendrimers set them apart from other polymers, their ability to modify nanoparticles (NPs) for biomedical applications. Dendrimers are spherical with multiple layers over their central core, each representing a generation. Their amphiphilic nature and hollow structure allow for the incorporation of multiple drugs or genes, in addition to enabling easy surface modification with cellular receptor-targeting moieties to ensure site-specific delivery of therapeutics. Dendrimers are employed in chemotherapeutic applications for the delivery of anticancer drugs. There are many inorganic NPs currently being investigated for cancer therapy, each with their own unique biological, chemical, and physical properties. To favor biomedical applications, inorganic NPs require suitable polymers to ensure stability, biodegradability and target specificity. The success of dendrimers is dependent on their unique structure, good bioavailability and stability. In this review, we describe the properties of dendrimers and their use as modifiers of inorganic NPs for enhanced therapeutic delivery. Herein, we review the significant developments in this area from 2015 to 2022. Databases including Web of Science, Scopus, Google Scholar, Science Direct, BioMed Central (BMC), and PubMed were searched for articles using dendrimers, inorganic nanoparticles and cancer as keywords.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
15
|
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122719. [PMID: 36559214 PMCID: PMC9786068 DOI: 10.3390/pharmaceutics14122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics. Advances in nanotechnology have encouraged scientists to develop novel formulations for brain drug delivery. In this article, we have broadly discussed the BBB as a limitation for brain drug delivery and ways to solve it using novel techniques such as nanomedicine, nose-to-brain drug delivery, and peptide as a drug delivery carrier. In addition, the article will help to understand the different factors governing the permeability of the BBB, as well as various formulation-related factors and the body clearance of the drug delivered into the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar Tekade
- Correspondence: ; Tel.: +91-796674550 or +91-7966745555; Fax: +91-7966745560
| |
Collapse
|
16
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
|
17
|
Li X, Ta W, Hua R, Song J, Lu W. A Review on Increasing the Targeting of PAMAM as Carriers in Glioma Therapy. Biomedicines 2022; 10:biomedicines10102455. [PMID: 36289715 PMCID: PMC9599152 DOI: 10.3390/biomedicines10102455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Glioma is an invasive brain cancer, and it is difficult to achieve desired therapeutic effects due to the high postoperative recurrence rate and limited efficacy of drug therapy hindered by the biological barrier of brain tissue. Nanodrug delivery systems are of great interest, and many efforts have been made to utilize them for glioma treatment. Polyamidoamine (PAMAM), a starburst dendrimer, provides malleable molecular size, functionalized molecular structure and penetrable brain barrier characteristics. Therefore, PAMAM-based nanodrug delivery systems (PAMAM DDS) are preferred for glioma treatment research. In this review, experimental studies on PAMAM DDS for glioma therapy were focused on and summarized. Emphasis was given to three major topics: methods of drug loading, linkers between drug/ligand and PAMAM and ligands of modified PAMAM. A strategy for well-designed PAMAM DDS for glioma treatment was proposed. Purposefully understanding the physicochemical and structural characteristics of drugs is necessary for selecting drug loading methods and achieving high drug loading capacity. Additionally, functional ligands contribute to achieving the brain targeting, brain penetration and low toxicity of PAMAM DDS. Furthermore, a brilliant linker facilitates multidrug combination and multifunctional PAMAM DDS. PAMAM DDS show excellent promise as drug vehicles and will be further studied for product development and safety evaluation.
Collapse
|
18
|
Application of Dendrimers in Anticancer Diagnostics and Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103237. [PMID: 35630713 PMCID: PMC9144149 DOI: 10.3390/molecules27103237] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
The application of dendrimeric constructs in medical diagnostics and therapeutics is increasing. Dendrimers have attracted attention due to their compact, spherical three-dimensional structures with surfaces that can be modified by the attachment of various drugs, hydrophilic or hydrophobic groups, or reporter molecules. In the literature, many modified dendrimer systems with various applications have been reported, including drug and gene delivery systems, biosensors, bioimaging contrast agents, tissue engineering, and therapeutic agents. Dendrimers are used for the delivery of macromolecules, miRNAs, siRNAs, and many other various biomedical applications, and they are ideal carriers for bioactive molecules. In addition, the conjugation of dendrimers with antibodies, proteins, and peptides allows for the design of vaccines with highly specific and predictable properties, and the role of dendrimers as carrier systems for vaccine antigens is increasing. In this work, we will focus on a review of the use of dendrimers in cancer diagnostics and therapy. Dendrimer-based nanosystems for drug delivery are commonly based on polyamidoamine dendrimers (PAMAM) that can be modified with drugs and contrast agents. Moreover, dendrimers can be successfully used as conjugates that deliver several substances simultaneously. The potential to develop dendrimers with multifunctional abilities has served as an impetus for the design of new molecular platforms for medical diagnostics and therapeutics.
Collapse
|
19
|
Cui Y, Liu K, Cui T, Liang B, Sun H, Wang L. Development of an Ultrasmall and Biocompatible Platinum Nanozyme Encapsulated by Zwitterionic Dendrimer for Highly Sensitive Detection of Glucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5568-5578. [PMID: 35482577 DOI: 10.1021/acs.langmuir.2c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many kinds of noble metal nanoparticles can mimic the peroxidase-like function of horseradish peroxidase, which results in their wide applications in bio-related detection and drug delivery. However, those metal nanoparticles usually have low stability and reduced catalytic activity in biological complex medium. Herein, a zwitterionic peroxidase-like enzyme has been developed, which has high stability in fibrinogen solutions and high sensitivity for glucose detection. Maleic anhydride, cysteamine, and zwitterionic peptide EKEKC (EK-5) were used to modify generation 5 poly(amido amine) dendrimers (G5 PAMAM) to prepare zwitterionic dendrimer G5MEKnC with nonfouling properties. Finally, the G5MEKnC-encapsulated platinum nanoparticles (Ptn-G5MEK50C) were prepared by entrapping the platinum nanoparticles (1.40 nm) in the catalytic centers in the interior of G5MEK50C. Pt55-G5MEK50C showed high stability in the buffer solution and the fibrinogen solution within 4 days. They also displayed high biocompatibility toward HeLa cells based on cytotoxicity results and morphological observations. Furthermore, the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 by Pt55-G5MEK50C followed the Michaelis-Menten equation, which confirmed their peroxidase-like properties. The catalytic mechanism was due to the generation of •OH from H2O2. More importantly, the peroxidase-like ability of Pt55-G5MEK50C was successfully used to establish a method for the determination of glucose concentration with a broad linear range of 1-2000 μM and a low detection limit of 0.1 μM. This method was highly accurate for the determination of glucose concentration in plasma. The zwitterionic dendrimer template enhanced the properties of Pt55-G5MEK50C. Taken together, a new kind of biocompatible nanozyme has been developed and successfully used for the sensitive detection of glucose in bio-related medium.
Collapse
Affiliation(s)
- Yanshuai Cui
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Kai Liu
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tianming Cui
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Bo Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Haotian Sun
- Ocean NanoTech, LLC, San Diego, California 92126, United States
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
20
|
Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Díaz CF, Guzmán L, Jiménez VA, Alderete JB. Polyamidoamine dendrimers of the third generation–chlorin e6 nanoconjugates: Nontoxic hybrid polymers with photodynamic activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.51835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Carola F. Díaz
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Universidad Andres Bello Talcahuano Chile
| | - Leonardo Guzmán
- Laboratory of Molecular Neurobiology, Department of Physiology, Faculty of Biological Sciences Universidad de Concepción Concepción Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas Universidad Andres Bello Talcahuano Chile
| | - Joel B. Alderete
- Instituto de Química de Recursos Naturales Universidad de Talca Talca Chile
| |
Collapse
|
22
|
Ferreira D, Moreira JN, Rodrigues LR. New Advances in Exosome-based Targeted Drug Delivery Systems. Crit Rev Oncol Hematol 2022; 172:103628. [PMID: 35189326 DOI: 10.1016/j.critrevonc.2022.103628] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, various drug nano-delivery platforms have emerged to enhance drug effectiveness in cancer treatment. However, their successful translation to clinics have been hampered by unwanted side effects, as well as associated toxicity. Therefore, there is an imperative need for drug delivery vehicles capable of surpassing cellular barriers and also efficiently transfer therapeutic payloads to tumor cells. Exosomes, a class of small extracellular vesicles naturally released from all cells, have been exploited as a favorable delivery vehicle due to their natural role in intracellular communication and biocompatibility. In this review, information on exosome biogenesis, contents, forms of isolation and their natural functions is discussed, further complemented with the various successful methodologies for therapeutic payloads encapsulation, including distinct loading approaches. In addition, grafting of molecules to improve pharmacokinetics, tumor homing-ligands, as well as stimuli-responsive elements to enhance cell specificity are also debated. In the end, the current status of clinical-grade exosome-based therapies is outlined.
Collapse
Affiliation(s)
- Débora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
23
|
Wang H, Chao Y, Zhao H, Zhou X, Zhang F, Zhang Z, Li Z, Pan J, Wang J, Chen Q, Liu Z. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS NANO 2022; 16:664-674. [PMID: 34978418 DOI: 10.1021/acsnano.1c08120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has shown tremendous promises in the treatment of various types of tumors. However, ICB therapy with antibodies appears to be less effective for glioma, partly owing to the existence of the blood-brain barrier (BBB) that impedes the entrance of therapeutics including most proteins to the central nervous system (CNS). Herein, considering the widely existing nicotinic acetylcholine receptors (nAChRs) and choline transporters (ChTs) on the surface of BBB, a choline analogue 2-methacryloyloxyethyl phosphorylcholine (MPC) is employed to fabricate the BBB-crossing copolymer via free-radical polymerization, followed by conjugation with antiprogrammed death-ligand 1 (anti-PD-L1) via a pH-sensitive traceless linker. The obtained nanoparticles exhibit significantly improved BBB-crossing capability owing to the receptor-mediated transportation after intravenous injection in an orthotopic glioma tumor model. Within the acidic glioma microenvironment, anti-PD-L1 would be released from such pH-responsive nanoparticles, further triggering highly effective ICB therapy of glioma to significantly prolong animal survival. This work thus realizes glioma microenvironment responsive BBB-crossing delivery of ICB antibodies, promising for the next generation immunotherapy of glioma.
Collapse
Affiliation(s)
- Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Xiuxia Zhou
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Fuyong Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Zheng Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Zhiheng Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Jian Pan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| |
Collapse
|
24
|
Li X, Song Q, Zhou T, Chen H, Nan W, Xie L, Wang H, Zhang Q, Hao Y. Facile fabrication of a biodegradable multi-hollow iron phosphate nanoplatform for tumor-specific nanocatalytic therapy and chemotherapy. Biomater Sci 2022; 10:6818-6827. [DOI: 10.1039/d2bm01033j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Doxorubicin-loaded iron phosphate could be disintegrated in a low pH environment, releasing both ferric and ferrous ions as well as doxorubicin, and achieve combination tumor therapy.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Qingxia Song
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Ting Zhou
- School of Basic Medical Science, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Hongli Chen
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
- The Third Affiliated Hospital of Xinxiang Medical University, 599 Hualan Avenue, Xinxiang 453003, P. R. China
| | - Wenbin Nan
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Liqin Xie
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Haijiao Wang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Qiqing Zhang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| | - Yongwei Hao
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang 453003, P. R. China
| |
Collapse
|
25
|
Seetasang S, Xu Y. Recent progress and perspectives in applications of 2-methacryloyloxyethyl phosphorylcholine polymers in biodevices at small scales. J Mater Chem B 2022; 10:2323-2337. [DOI: 10.1039/d1tb02675e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired materials have attracted attention in a wide range of fields. Among these materials, a polymer family containing 2-methacryloyloxyethyl phosphorylcholine (MPC), which has a zwitterionic phosphorylcholine headgroup inspired by the...
Collapse
|
26
|
Sharma R, Liaw K, Sharma A, Jimenez A, Chang M, Salazar S, Amlani I, Kannan S, Kannan RM. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J Control Release 2021; 337:179-192. [PMID: 34274384 PMCID: PMC8600682 DOI: 10.1016/j.jconrel.2021.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Glioblastoma is among the most aggressive forms of cancers, with a median survival of just 15-20 months for patients despite maximum clinical intervention. The majority of conventional anti-cancer therapies fail due to associated off-site toxicities which can be addressed by developing target-specific drug delivery systems. Advances in nanotechnology have provided targeted systems to overcome drug delivery barriers associated with brain and other types of cancers. Dendrimers have emerged as promising vehicles for targeted drug and gene delivery. Dendrimer-mediated targeting strategies can be further enhanced through the addition of targeting ligands to enable receptor-specific interactions. Here, we explore the sugar moieties as ligands conjugated to hydroxyl-terminated polyamidoamine dendrimers to leverage altered metabolism in cancer and immune targeting. Using a highly facile click chemistry approach, we modified the surface of dendrimers with glucose, mannose, or galactose moieties in a well-defined manner, to target upregulated sugar transporters in the context of glioblastoma. We show that glucose modification significantly enhanced targeting of tumor-associated macrophages (TAMs) and microglia by increasing brain penetration and cellular internalization, while galactose modification shifts targeting away from TAMs towards galectins on glioblastoma tumor cells. Mannose modification did not alter TAMs and microglia targeting of these dendrimers, but did alter their kinetics of accumulation within the GBM tumor. The whole body biodistribution was largely similar between the systems. These results demonstrate that dendrimers are versatile delivery vehicles that can be modified to tailor their targeting for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ambar Jimenez
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle Chang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sebastian Salazar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Imaan Amlani
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
28
|
Abstract
The development of molecular nanostructures with well-defined particle size and shape is of eminent interest in biomedicine. Among many studied nanostructures, dendrimers represent the group of those most thoroughly characterized ones. Due to their unique structure and properties, dendrimers are very attractive for medical and pharmaceutical applications. Owing to the controllable cavities inside the dendrimer, guest molecules may be encapsulated, and highly reactive terminal groups are susceptible to further modifications, e.g., to facilitate target delivery. To understand the potential of these nanoparticles and to predict and avoid any adverse cellular reactions, it is necessary to know the mechanisms responsible for an efficient dendrimer uptake and the destination of their intracellular journey. In this article, we summarize the results of studies describing the dendrimer uptake, traffic, and efflux mechanisms depending on features of specific nanoparticles and cell types. We also present mechanisms of dendrimers responsible for toxicity and alteration in signal transduction pathways at the cellular level.
Collapse
Affiliation(s)
- Barbara Ziemba
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Maciej Borowiec
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland
| | - Ida Franiak-Pietryga
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, Lodz, Poland.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|