1
|
Shin S, Ahn YR, Kim M, Choi J, Kim H, Kim HO. Mammalian Cell Membrane Hybrid Polymersomes for mRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38615329 DOI: 10.1021/acsami.4c00843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Cell membranes are structures essential to the cell function and adaptation. Recent studies have targeted cell membranes to identify their protective and interactive properties. Leveraging these attributes of cellular membranes and their application to vaccine delivery is gaining increasing prominence. This study aimed to fuse synthetic polymeric nanoparticles with cell membranes to develop cell membrane hybrid polymersomes (HyPSomes) for enhanced vaccine delivery. We designed a platform to hybridize cell membranes with methoxy-poly(ethylene glycol)-block-polylactic acid nanoparticles by using the properties of both components. The formed HyPSomes were optimized by using dynamic light scattering, transmission electron microscopy, and Förster resonance energy transfer, and their stability was confirmed. The synthesized HyPSomes replicated the antigenic surface of the source cells and possessed the stability and efficacy of synthetic nanoparticles. These HyPSomes demonstrated enhanced cellular uptake and translation efficiency and facilitated endosome escape. HyPSomes showed outstanding capabilities for the delivery of foreign mRNAs to antigen-presenting cells. HyPSomes may serve as vaccine delivery systems by bridging the gap between synthetic and natural systems. These systems could be used in other contexts, e.g., diagnostics and drug delivery.
Collapse
Affiliation(s)
- SoJin Shin
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - HakSeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| |
Collapse
|
2
|
Filipe HAL, Moreira AF, Miguel SP, Ribeiro MP, Coutinho P. Interaction of Near-Infrared (NIR)-Light Responsive Probes with Lipid Membranes: A Combined Simulation and Experimental Study. Pharmaceutics 2023; 15:1853. [PMID: 37514039 PMCID: PMC10383845 DOI: 10.3390/pharmaceutics15071853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered a major societal challenge for the next decade worldwide. Developing strategies for simultaneous diagnosis and treatment has been considered a promising tool for fighting cancer. For this, the development of nanomaterials incorporating prototypic near-infrared (NIR)-light responsive probes, such as heptamethine cyanines, has been showing very promising results. The heptamethine cyanine-incorporating nanomaterials can be used for a tumor's visualization and, upon interaction with NIR light, can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. In this work, we studied the interaction of 12 NIR-light responsive probes with lipid membrane models by molecular dynamics simulations. We performed a detailed characterization of the location, orientation, and local perturbation effects of these molecules on the lipid bilayer. Based on this information, the probes were divided into two groups, predicting a lower and higher perturbation of the lipid bilayer. From each group, one molecule was selected for testing in a membrane leakage assay. The experimental data validate the hypothesis that molecules with charged substituents, which function as two polar anchors for the aqueous phase while spanning the membrane thickness, are more likely to disturb the membrane by the formation of defects and pores, increasing the membrane leakage. The obtained results are expected to contribute to the selection of the most suitable molecules for the desired application or eventually guiding the design of probe modifications for achieving an optimal interaction with tumor cell membranes.
Collapse
Affiliation(s)
- Hugo A L Filipe
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - André F Moreira
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Sónia P Miguel
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Xu C, Ju D, Zhang X. Cell Membrane-Derived Vesicle: A Novel Vehicle for Cancer Immunotherapy. Front Immunol 2022; 13:923598. [PMID: 35874757 PMCID: PMC9300949 DOI: 10.3389/fimmu.2022.923598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 01/15/2023] Open
Abstract
As nano-sized materials prepared by isolating, disrupting and extruding cell membranes, cellular vesicles are emerging as a novel vehicle for immunotherapeutic drugs to activate antitumor immunity. Cell membrane-derived vesicles inherit the surface characteristics and functional properties of parental cells, thus having superior biocompatibility, low immunogenicity and long circulation. Moreover, the potent antitumor effect of cellular vesicles can be achieved through surface modification, genetic engineering, hybridization, drug encapsulation, and exogenous stimulation. The capacity of cellular vesicles to combine drugs of different compositions and functions in physical space provides a promising vehicle for combinational immunotherapy of cancer. In this review, the latest advances in cellular vesicles as vehicles for combinational cancer immunotherapy are systematically summarized with focuses on manufacturing processes, cell sources, therapeutic strategies and applications, providing an insight into the potential and existing challenges of using cellular vesicles for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Dianwen Ju
- *Correspondence: Dianwen Ju, ; Xuyao Zhang,
| | | |
Collapse
|
4
|
Lin W, Cai XD. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front Oncol 2021; 11:758884. [PMID: 34804956 PMCID: PMC8602829 DOI: 10.3389/fonc.2021.758884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cell-derived extracellular vesicles (CEVs), a novel type of therapeutic agent in cancer treatment, can be prepared from the autocrine secretion of various cancer cells, the direct extraction of cancer cells and the combination of cancer cell-derived membranes with advanced materials. With various bioactive molecules, exosomes are produced by cells for intercellular communication. Although cancer cell-derived exosomes are known to inhibit tumor apoptosis and promote the progression of cancer, researchers have developed various innovative strategies to prepare anti-tumor vesicles from cancer cells. With current strategies for anti-tumor vesicles, four different kinds of CEVs are classified including irradiated CEVs, advanced materials combined CEVs, chemotherapeutic drugs loaded CEVs and genetically engineered CEVs. In this way, CEVs can not only be the carriers for anti-tumor drugs to the target tumor area but also act as immune-active agents. Problems raised in the strategies mainly concerned with the preparation, efficacy and application. In this review, we classified and summarized the current strategies for utilizing the anti-tumor potential of CEVs. Additionally, the challenges and the prospects of this novel agent have been discussed.
Collapse
Affiliation(s)
- Weijian Lin
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xing-Dong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|