1
|
Ding Q, Liu W, Zhang S, Sun S, Yang J, Zhang L, Wang N, Ma S, Chai G, Shen L, Gao Y, Ding C, Liu X. Hydrogel loaded with thiolated chitosan modified taxifolin liposome promotes osteoblast proliferation and regulates Wnt signaling pathway to repair rat skull defects. Carbohydr Polym 2024; 336:122115. [PMID: 38670750 DOI: 10.1016/j.carbpol.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
To alleviate skull defects and enhance the biological activity of taxifolin, this study utilized the thin-film dispersion method to prepare paclitaxel liposomes (TL). Thiolated chitosan (CSSH)-modified TL (CTL) was synthesized through charge interactions. Injectable hydrogels (BLG) were then prepared as hydrogel scaffolds loaded with TAX (TG), TL (TLG), and CTL (CTLG) using a Schiff base reaction involving oxidized dextran and carboxymethyl chitosan. The study investigated the bone reparative properties of CTLG through molecular docking, western blot techniques, and transcriptome analysis. The particle sizes of CTL were measured at 248.90 ± 14.03 nm, respectively, with zeta potentials of +36.68 ± 5.43 mV, respectively. CTLG showed excellent antioxidant capacity in vitro. It also has a good inhibitory effect on Escherichia coli and Staphylococcus aureus, with inhibition rates of 93.88 ± 1.59 % and 88.56 ± 2.83 % respectively. The results of 5-ethynyl-2 '-deoxyuridine staining, alkaline phosphatase staining and alizarin red staining showed that CTLG also had the potential to promote the proliferation and differentiation of mouse embryonic osteoblasts (MC3T3-E1). The study revealed that CTLG enhances the expression of osteogenic proteins by regulating the Wnt signaling pathway, shedding light on the potential application of TAX and bone regeneration mechanisms.
Collapse
Affiliation(s)
- Qiteng Ding
- Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Shuai Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- Jilin Agricultural University, Changchun 130118, China
| | - Shuang Ma
- Jilin Agricultural University, Changchun 130118, China
| | - Guodong Chai
- Jilin Agricultural University, Changchun 130118, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Ltd., Linjiang 134600, China
| | - Chuanbo Ding
- Jilin Agricultural University, Changchun 130118, China; College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China.
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| |
Collapse
|
2
|
Sacks G, Shah V, Yao L, Yan C, Shah D, Limeta L, DeStefano V. Polyaryletherketones: Properties and applications in modern medicine. BIOMEDICAL TECHNOLOGY 2024; 6:75-89. [DOI: 10.1016/j.bmt.2023.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
3
|
Peng T, Shi Q, Chen M, Yu W, Yang T. Antibacterial-Based Hydrogel Coatings and Their Application in the Biomedical Field-A Review. J Funct Biomater 2023; 14:jfb14050243. [PMID: 37233353 DOI: 10.3390/jfb14050243] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels exhibit excellent moldability, biodegradability, biocompatibility, and extracellular matrix-like properties, which make them widely used in biomedical fields. Because of their unique three-dimensional crosslinked hydrophilic networks, hydrogels can encapsulate various materials, such as small molecules, polymers, and particles; this has become a hot research topic in the antibacterial field. The surface modification of biomaterials by using antibacterial hydrogels as coatings contributes to the biomaterial activity and offers wide prospects for development. A variety of surface chemical strategies have been developed to bind hydrogels to the substrate surface stably. We first introduce the preparation method for antibacterial coatings in this review, which includes surface-initiated graft crosslinking polymerization, anchoring the hydrogel coating to the substrate surface, and the LbL self-assembly technique to coat crosslinked hydrogels. Then, we summarize the applications of hydrogel coating in the biomedical antibacterial field. Hydrogel itself has certain antibacterial properties, but the antibacterial effect is not sufficient. In recent research, in order to optimize its antibacterial performance, the following three antibacterial strategies are mainly adopted: bacterial repellent and inhibition, contact surface killing of bacteria, and release of antibacterial agents. We systematically introduce the antibacterial mechanism of each strategy. The review aims to provide reference for the further development and application of hydrogel coatings.
Collapse
Affiliation(s)
- Tai Peng
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Qi Shi
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Manlong Chen
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
| | - Wenyi Yu
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| | - Tingting Yang
- Key Lab of Oral Biomedical Materials and Clinical Application of Heilongjiang Province, Jiamusi University, Jiamusi 154007, China
- School of Materials Science and Engineering, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
4
|
Cheng X, Yang X, Liu C, Li Y, Zhang Y, Wang J, Zhang X, Jian X. Stabilization of Apatite Coatings on PPENK Surfaces by Mechanical Interlocking to Promote Bioactivity and Osseointegration In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:697-710. [PMID: 36571180 DOI: 10.1021/acsami.2c20633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Apatite coatings with high stability can effectively improve the surface bioactivity and osteogenic activity of implant materials. In clinical practice, the ability of apatite coatings to bond with the substrate is critical to the effect of implants. Here, we propose a strategy to construct a three-dimensional (3D) nanoporous structure on the surface of a poly(phthalazinone ether nitrile ketone) (PPENK) substrate and introduce a polydopamine (PDA) coating with grafted phosphonate groups to enhance the overall deposition of a bone-like apatite coating in the 3D nanoporous structure during mineralization. This method leads to a mechanical interlocking between the apatite coating and the substrate, which increases the stability of the apatite coating. The apatite coating confers a better bioactive surface to PPENK and also promotes osteogenic differentiation and adhesion of MC3T3-E1 osteoblasts in vitro. The samples are then implanted into rat femurs to characterize in vivo osseointegration. Micro-CT data and histological staining of tissue sections reveal that PPENK with a stable apatite coating induces less fibrous capsule formation and no inflammatory response and promotes osteogenic differentiation and bone-bonding strength. This enhances the long-term use of PPENK implant materials and shows great potential for clinical application as orthopedic implants.
Collapse
Affiliation(s)
- Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chengde Liu
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yangyang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Liaoning Province Engineering Research Centre of High Performance Resins, Dalian 116024, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
- Liaoning Province Engineering Research Centre of High Performance Resins, Dalian 116024, China
| |
Collapse
|
5
|
Palierse E, Masse S, Laurent G, Le Griel P, Mosser G, Coradin T, Jolivalt C. Synthesis of Hybrid Polyphenol/Hydroxyapatite Nanomaterials with Anti-Radical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3588. [PMID: 36296776 PMCID: PMC9612319 DOI: 10.3390/nano12203588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant-derived natural bioactive molecules are of great therapeutic potential but, so far, their application in nanomedicine has scarcely been studied. This work aimed at comparing two methodologies, i.e., adsorption and in situ incorporation, to prepare hybrid polyphenol/hydroxyapatite nanoparticles. Two flavonoids, baicalin and its aglycone derivative baicalein, and two phenolic acids derived from caffeic acid, rosmarinic and chlorogenic acids, were studied. Adsorption of these polyphenols on pre-formed hydroxyapatite nanoparticles did not modify particle size or shape and loading was less than 10% (w/w). In contrast, presence of polyphenols during the synthesis of nanoparticles significantly impacted and sometimes fully inhibited hydroxyapatite formation but recovered particles could exhibit higher loadings. For most hybrid particles, release profiles consisted of a 24 h burst effect followed by a slow release over 2 weeks. Antioxidant properties of the polyphenols were preserved after adsorption but not when incorporated in situ. These results provide fruitful clues for the valorization of natural bioactive molecules in nanomedicine.
Collapse
Affiliation(s)
- Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 75005 Paris, France
| | - Sylvie Masse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Patrick Le Griel
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Gervaise Mosser
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, 75005 Paris, France
| |
Collapse
|
6
|
Li Y, Liu C, Cheng X, Zhang A, Liu W, Zhang S, Jian X. Tunicate inspired gelatin-based tough hydrogel wound dressing containing twisted phthalazinone with adhesive, self-healing and antibacterial properties. Int J Biol Macromol 2022; 218:639-653. [PMID: 35872313 DOI: 10.1016/j.ijbiomac.2022.07.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 12/17/2022]
Abstract
As a hydrolytic product of collagen, gelatin is a polypeptide of biological origin. Gelatin hydrogels emerge as promising material candidates for traditional dressings due to good biocompatibility and the ability to keep wounds moist. However, it is difficult to simultaneously achieve gelatin hydrogel with robust mechanical property for long-term usage, reliable tissue adhesion, self-healing and antibacterial properties. Herein, we propose a simply synthesized strategy of a multifunctional gelatin hydrogel dressing, which is constructed by conjugating a newly synthesized 2-(4'-aldehydephenyl)-4-(2',3',4'-trihydroxyphenyl)-2,3-phthalazine-1(2H)-one (THPZB) to gelatin with Schiff base and chelating with Fe3+ ions (termed G/THPZB/Fe hydrogel). The twisted structure of phthalazinone in THPZB leads to entanglement of gelatin molecular chains, which resolves the stiffness-toughness conflict of the hydrogel. Furthermore, the strong tissue adhesion and fast self-healing capability mainly originate from the hydrogen bonding of the pyrogallol in THPZB. In vitro study shows that the hydrogels possess good biocompatibility with L929 cells, hemostatic and antibacterial activity. In the rat model of skin infection, the hydrogel dressing not only have no adverse effects on vital organs, but also can effectively promote wound healing of bacterial infection. Considering that it has multiple functions, G/THPZB/Fe hydrogel can be used as a promising wound dressing for biomedical applications.
Collapse
Affiliation(s)
- Yizheng Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Chengde Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China.
| | - Xitong Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Ali Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Wentao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China; Department of Polymer Science & Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xigao Jian
- Liaoning Province Engineering Research Centre of High-Performance Resins, 116024 Dalian, China.
| |
Collapse
|
7
|
Teng C, Tong Z, He Q, Zhu H, Wang L, Zhang X, Wei W. Mesenchymal Stem Cells–Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects. Gels 2022; 8:gels8050275. [PMID: 35621573 PMCID: PMC9141522 DOI: 10.3390/gels8050275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022] Open
Abstract
The repair of large bone defects in clinic is a challenge and urgently needs to be solved. Tissue engineering is a promising therapeutic strategy for bone defect repair. In this study, hydrogel microspheres (HMs) were fabricated to act as carriers for bone marrow mesenchymal stem cells (BMSCs) to adhere and proliferate. The HMs were produced by a microfluidic system based on light-induced gelatin of gelatin methacrylate (GelMA). The HMs were demonstrated to be biocompatible and non-cytotoxic to stem cells. More importantly, the HMs promoted the osteogenic differentiation of stem cells. In vivo, the ability of bone regeneration was studied by way of implanting a BMSC/HM system in the cranial defect of rats for 8 weeks. The results confirmed that the BMSC/HM system can induce superior bone regeneration compared with both the HMs alone group and the untreated control group. This study provides a simple and effective research idea for bone defect repair, and the subsequent optimization study of HMs will provide a carrier material with application prospects for tissue engineering in the future.
Collapse
Affiliation(s)
- Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Qiulin He
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China;
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huangrong Zhu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
| | - Lu Wang
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China;
| | - Xianzhu Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, and Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (X.Z.); (W.W.)
| | - Wei Wei
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China; (C.T.); (Z.T.); (H.Z.)
- Correspondence: (X.Z.); (W.W.)
| |
Collapse
|
8
|
Xu D, Gan K, Wang Y, Wu Z, Wang Y, Zhang S, Peng Y, Fang X, Wei H, Zhang Y, Ma W, Chen J. A Composite Deferoxamine/Black Phosphorus Nanosheet/Gelatin Hydrogel Scaffold for Ischemic Tibial Bone Repair. Int J Nanomedicine 2022; 17:1015-1030. [PMID: 35299865 PMCID: PMC8923703 DOI: 10.2147/ijn.s351814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/18/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Bone delay union is mostly caused by lack of blood supply. Although autografts, allografts and artificial bone have been widely used to treat bone delay union, the bone regeneration fails in the ischemic site accompanied by the bone donor site complications and disease transmission. Recently, there is a growing recognition of the importance of hydrogel scaffolds which are regarded as an eligible engineer tissue for bone repair. However, hydrogel is still limited in improving neovascularization. Methods In this work, black phosphorus nanosheet and deferoxamine (BPN-DFO) were loaded in the gelatin hydrogel to overcome the high risk of bone delay union and systemically investigated the regeneration capability of BPN-DFO hydrogel in vitro and vivo. Results The resulting BPN-DFO hydrogel scaffold showed superior swollen, degradation and release rate, as well as satisfied biocompatibility. BPN-DFO hydrogel shown the significant up-expression of mRNA related to bone regeneration and cell proliferation. In vivo, the proposed BPN-DFO hydrogel significantly improved osteogenesis and neovascularization in the ischemic tibial bone site of SD rats with acute femoral artery occlusion. Both macroscopic and histological evaluation of new regenerated bone showed newly formed blood vessel and collagen using BPN-DFO hydrogel. The immunohistochemistry and RT-PCR revealed that the bone regeneration could be improved via BMP/Runx2 pathway. Conclusion The BPN-DFO hydrogel possesses potential tissue engineer material for ischemic bone defect treatment. However, furthermore studies are needed to testify the safety and efficacy of BPN-DFO hydrogel.
Collapse
Affiliation(s)
- Dingli Xu
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
- Ningbo No.6 Hospital, Ningbo, 315000, People’s Republic of China
| | - Kaifeng Gan
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 31500, People’s Republic of China
| | - Yang Wang
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Zeting Wu
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Yulong Wang
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Song Zhang
- The Affiliated Hospital of Ningbo University Medical School, Ningbo, 315000, People’s Republic of China
| | - Yujie Peng
- Ningbo No.6 Hospital, Ningbo, 315000, People’s Republic of China
| | - Xuguang Fang
- The First Affiliated Hospital of Xi ‘an Medical University, Xi’an, 710082, People’s Republic of China
| | - Hua Wei
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People’s Republic of China
| | - Yansheng Zhang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People’s Republic of China
| | - Weihu Ma
- Ningbo No.6 Hospital, Ningbo, 315000, People’s Republic of China
- Correspondence: Weihu Ma; Jing Chen, Email ;
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, People’s Republic of China
| |
Collapse
|