1
|
Larin DE, Govorun EN. Surfactant-Induced Patterns in Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8545-8552. [PMID: 28759241 DOI: 10.1021/acs.langmuir.7b01850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The properties of surfaces with grafted macromolecules are determined by a fine structure of the macromolecular layer, whereas the mixtures of macromolecules with surfactants are very rich in structure types. Using the scaling mean-field theory, we consider the self-assembly in polymer brushes into various patterns induced by interactions with low-molecular surfactants. The interaction energies of the parts of a surfactant molecule with the polymer units are assumed to be greatly different. With increasing the grafting density, the formation of lamellae perpendicular to the grafting plane, a continuous layer with oblong or round pores, or a homogeneous brush is predicted. The driving force of the pattern formation is a gain in the interaction energy of surfactant molecules oriented at the lateral surfaces of lamellae or pores. The process of pore formation in a homogeneous brush caused by a temperature change at definite grafting densities is described as the first-order phase transition. It is accompanied by a stepwise extension of the brush and by orientational ordering of surfactant molecules. The transitions between the other patterns are of the second order. The thickness of lamellae and the distance between pores are approximately twice the surfactant molecule size except for the extremely high grafting densities. The diagrams of brush patterns are presented and discussed.
Collapse
Affiliation(s)
- Daniil E Larin
- Faculty of Physics, M. V. Lomonosov Moscow State University , Leninskie gory, Moscow, 119991 Russia
| | - Elena N Govorun
- Faculty of Physics, M. V. Lomonosov Moscow State University , Leninskie gory, Moscow, 119991 Russia
| |
Collapse
|
2
|
Greyling G, Pasch H. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation. J Chromatogr A 2017; 1512:115-123. [PMID: 28716356 DOI: 10.1016/j.chroma.2017.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions.
Collapse
Affiliation(s)
- Guilaume Greyling
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602 Stellenbosch, South Africa.
| | - Harald Pasch
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602 Stellenbosch, South Africa
| |
Collapse
|
3
|
|
4
|
|
5
|
Lacík I, Stach M, Kasák P, Semak V, Uhelská L, Chovancová A, Reinhold G, Kilz P, Delaittre G, Charleux B, Chaduc I, D'Agosto F, Lansalot M, Gaborieau M, Castignolles P, Gilbert RG, Szablan Z, Barner-Kowollik C, Hesse P, Buback M. SEC Analysis of Poly(Acrylic Acid) and Poly(Methacrylic Acid). MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400339] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Marek Stach
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Peter Kasák
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Vladislav Semak
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Lucia Uhelská
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Anna Chovancová
- Polymer Institute of the Slovak Academy of Sciences; Dúbravska cesta 9 845 41 Bratislava 45 Slovakia
| | - Günter Reinhold
- PSS Polymer Standards Service GmbH; In der Dalheimer Wiese 5 D-55120 Mainz Germany
| | - Peter Kilz
- PSS Polymer Standards Service GmbH; In der Dalheimer Wiese 5 D-55120 Mainz Germany
| | - Guillaume Delaittre
- UPMC Univ. Paris 6, Sorbonne Universités and CNRS; Laboratoire de Chimie des Polymères, UMR 7610; 3 rue Galilée 94200 Ivry France
| | - Bernadette Charleux
- UPMC Univ. Paris 6, Sorbonne Universités and CNRS; Laboratoire de Chimie des Polymères, UMR 7610; 3 rue Galilée 94200 Ivry France
| | - Isabelle Chaduc
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP; Bat 308F, 43 Bd du 11 Novembre 1918, BP 2077 69616 Villeurbanne France
| | - Franck D'Agosto
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP; Bat 308F, 43 Bd du 11 Novembre 1918, BP 2077 69616 Villeurbanne France
| | - Muriel Lansalot
- Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS, UMR 5265, C2P2 (Chemistry, Catalysis, Polymers and Processes), Team LCPP; Bat 308F, 43 Bd du 11 Novembre 1918, BP 2077 69616 Villeurbanne France
| | - Marianne Gaborieau
- University of Sydney; School of Chemistry; Key Centre for Polymers and Colloids; Sydney NSW 2006 Australia
- University of Western Sydney; School of Science and Health; Australian Centre for Research on Separation Science; Molecular Medicine Research Group; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Patrice Castignolles
- University of Sydney; School of Chemistry; Key Centre for Polymers and Colloids; Sydney NSW 2006 Australia
- University of Western Sydney; School of Science and Health; Australian Centre for Research on Separation Science; Molecular Medicine Research Group; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Robert G. Gilbert
- The University of Queensland; Centre for Nutrition and Food Sciences; Queensland Alliance for Agriculture and Food Innovation; Brisbane QLD 4072 Australia
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei 430030 China
| | - Zachary Szablan
- Centre for Advanced Macromolecular Design; School of Chemical Engineering and Industrial Chemistry; The University of New South Wales (UNSW); Sydney NSW 2052 Australia
| | - Christopher Barner-Kowollik
- Centre for Advanced Macromolecular Design; School of Chemical Engineering and Industrial Chemistry; The University of New South Wales (UNSW); Sydney NSW 2052 Australia
| | - Pascal Hesse
- Institute of Physical Chemistry; University of Goettingen; Tammannstraße 6 37077 Goettingen Germany
| | - Michael Buback
- Institute of Physical Chemistry; University of Goettingen; Tammannstraße 6 37077 Goettingen Germany
| |
Collapse
|
6
|
Terao K, Kanenaga R, Sato T, Mizuno K, Bächinger HP. Complex Formation of Collagen Model Peptides with Polyelectrolytes and Stabilization of the Triple Helical Structure. Macromolecules 2011. [DOI: 10.1021/ma202176w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ken Terao
- Department of Macromolecular Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, United States
| | - Ryoko Kanenaga
- Department of Macromolecular Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Takahiro Sato
- Department of Macromolecular Science, Osaka University, 1-1, Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Kazunori Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, United States
| | - Hans Peter Bächinger
- Research Department, Shriners Hospital for Children, Portland, Oregon 97239, United States
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, United States
| |
Collapse
|