1
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
2
|
Kandasamy G, Danilovtseva EN, Annenkov VV, Krishnan UM. Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:354-369. [PMID: 32190532 PMCID: PMC7061483 DOI: 10.3762/bjnano.11.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/20/2020] [Indexed: 05/08/2023]
Abstract
The present work explores the ability of poly(1-vinylimidazole) (PVI) to complex small interfering RNA (siRNA) silencing vascular endothelial growth factor (VEGF) and the in vitro efficiency of the formed complexes in A549 lung cancer cells. The polyplex formed was found to exhibit 66% complexation efficiency. The complexation was confirmed by gel retardation assays, FTIR and thermal analysis. The blank PVI polymer was not toxic to cells. The polyplex was found to exhibit excellent internalization and escaped the endosome effectively. The polyplex was more effective than free siRNA in silencing VEGF in lung cancer cells. The silencing of VEGF was quantified using Western blot and was also reflected in the depletion of HIF-1α levels in the cells treated with the polyplex. VEGF silencing by the polyplex was found to augment the cytotoxic effects of the chemotherapeutic agent 5-fluorouracil. Microarray analysis of the mRNA isolated from cells treated with free siRNA and the polyplex reveal that the VEGF silencing by the polyplex also altered the expression levels of several other genes that have been connected to the proliferation and invasion of lung cancer cells. These results indicate that the PVI complexes can be an effective agent to counter lung cancer.
Collapse
Affiliation(s)
- Gayathri Kandasamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| | - Elena N Danilovtseva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk, 664033, Russia
| | - Vadim V Annenkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, Irkutsk, 664033, Russia
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur – 613401, Tamil Nadu, India
| |
Collapse
|
3
|
Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release 2019; 316:263-291. [PMID: 31689462 DOI: 10.1016/j.jconrel.2019.10.046] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Within the field of gene therapy, there is a considerable need for the development of non-viral vectors that are able to compete with the efficiency obtained by viral vectors, while maintaining a good toxicity profile and not inducing an immune response within the body. While there have been many reports of possible polymeric delivery systems, few of these systems have been successful in the clinical setting due to toxicity, systemic instability or gene regulation inefficiency, predominantly due to poor endosomal escape and cytoplasmic release. The objective of this review is to provide an overview of previously published polymeric non-coding RNA and, to a lesser degree, oligo-DNA delivery systems with emphasis on their positive and negative attributes, in order to provide insight in the numerous hurdles that still limit the success of gene therapy.
Collapse
Affiliation(s)
- Anna Kargaard
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa; University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Joost P G Sluijter
- University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; Utrecht University, the Netherlands
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
4
|
Danilovtseva EN, Zelinskiy SN, Pal’shin VA, Kandasamy G, Krishnan UM, Annenkov VV. Poly(1-vinylimidazole) Prospects in Gene Delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2240-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Rodriguez KJ, Gajewska B, Pollard J, Pellizzoni MM, Fodor C, Bruns N. Repurposing Biocatalysts to Control Radical Polymerizations. ACS Macro Lett 2018; 7:1111-1119. [PMID: 35632946 DOI: 10.1021/acsmacrolett.8b00561] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Reversible-deactivation radical polymerizations (controlled radical polymerizations) have revolutionized and revitalized the field of polymer synthesis. While enzymes and other biologically derived catalysts have long been known to initiate free radical polymerizations, the ability of peroxidases, hemoglobin, laccases, enzyme-mimetics, chlorophylls, heme, red blood cells, bacteria, and other biocatalysts to control or initiate reversible-deactivation radical polymerizations has only been described recently. Here, the scope of biocatalytic atom transfer radical polymerizations (bioATRP), enzyme-initiated reversible addition-fragmentation chain transfer radical polymerizations (bioRAFT), biocatalytic organometallic-mediated radical polymerizations (bioOMRP), and biocatalytic reversible complexation mediated polymerizations (bioRCMP) is critically reviewed, and the potential of these reactions for the environmentally friendly synthesis of precision polymers, for the preparation of functional nanostructures, for the modification of surfaces, and for biosensing is discussed.
Collapse
Affiliation(s)
- Kyle J. Rodriguez
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Bernadetta Gajewska
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Jonas Pollard
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Csaba Fodor
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Danilovtseva EN, Maheswari Krishnan U, Pal'shin VA, Annenkov VV. Polymeric Amines and Ampholytes Derived from Poly(acryloyl chloride): Synthesis, Influence on Silicic Acid Condensation and Interaction with Nucleic Acid. Polymers (Basel) 2017; 9:polym9110624. [PMID: 30965927 PMCID: PMC6418922 DOI: 10.3390/polym9110624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 11/16/2022] Open
Abstract
Polymeric amines are intensively studied due to various valuable properties. This study describes the synthesis of new polymeric amines and ampholytes by the reaction of poly(acryloyl chloride) with trimethylene-based polyamines containing one secondary and several (1⁻3) tertiary amine groups. The polymers contain polyamine side chains and carboxylic groups when the polyamine was in deficiency. These polymers differ in structure of side groups, but they are identical in polymerization degree and polydispersity, which facilitates the study of composition-properties relationships. The structure of the obtained polymers was confirmed with 13C nuclear magnetic resonance infrared spectroscopy, and acid-base properties were studied with potentiometry titration. Placement of the amine groups in the side chains influences their acid-base properties: protonation of the amine group exerts a larger impact on the amine in the same side chain than on the amines in the neighboring side chains. The obtained polymers are prone to aggregation in aqueous solutions tending to insolubility at definite pH values in the case of polyampholytes. Silicic acid condensation in the presence of new polymers results in soluble composite nanoparticles and composite materials which consist of ordered submicrometer particles according to dynamic light scattering and electron microscopy. Polymeric amines, ampholytes, and composite nanoparticles are capable of interacting with oligonucleotides, giving rise to complexes that hold promise for gene delivery applications.
Collapse
Affiliation(s)
- Elena N Danilovtseva
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, 664033 Irkutsk, Russia.
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, Tamil Nadu, India.
| | - Viktor A Pal'shin
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, 664033 Irkutsk, Russia.
| | - Vadim V Annenkov
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3, Ulan-Batorskaya St., P.O. Box 278, 664033 Irkutsk, Russia.
| |
Collapse
|
7
|
Pekkanen AM, Zawaski C, Stevenson AT, Dickerman R, Whittington AR, Williams CB, Long TE. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12324-12331. [PMID: 28329442 DOI: 10.1021/acsami.7b01777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca2+, Mg2+, and Zn2+) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.
Collapse
Affiliation(s)
- Allison M Pekkanen
- School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Callie Zawaski
- Department of Mechanical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - André T Stevenson
- Department of Materials Science and Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Ross Dickerman
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Abby R Whittington
- School of Biomedical Engineering and Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
- Department of Chemical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Department of Mechanical Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
8
|
Wang B, Liu HJ, Jiang TT, Li QH, Chen Y. Thermo-, and pH dual-responsive poly(N-vinylimidazole): Preparation, characterization and its switchable catalytic activity. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.09.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Vankayala R, Kalluru P, Tsai HH, Chiang CS, Hwang KC. Effects of surface functionality of carbon nanomaterials on short-term cytotoxicity and embryonic development in zebrafish. J Mater Chem B 2014; 2:1038-1047. [DOI: 10.1039/c3tb21497d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cationic surface functionalities of nanomaterials, such as imidazolium and trimethylammonium ethyl methacrylate, induce strong cytotoxicity in vitro and in zebrafish.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Poliraju Kalluru
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Hsin-Hui Tsai
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| | - Kuo Chu Hwang
- Department of Chemistry
- National Tsing Hua University
- Hsinchu 30013, Taiwan
| |
Collapse
|