1
|
Poellmann MJ, Javius-Jones K, Hopkins C, Lee JW, Hong S. Dendritic-Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjug Chem 2022; 33:2008-2017. [PMID: 35512322 DOI: 10.1021/acs.bioconjchem.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymers constitute a diverse class of macromolecules that have demonstrated their unique advantages to be utilized for drug or gene delivery applications. In particular, polymers with a highly ordered, hyperbranched structure─"dendrons"─offer significant benefits to the design of such nanomedicines. The incorporation of dendrons into block copolymer micelles can endow various unique properties that are not typically observed from linear polymer counterparts. Specifically, the dendritic structure induces the conical shape of unimers that form micelles, thereby improving the thermodynamic stability and achieving a low critical micelle concentration (CMC). Furthermore, through a high density of highly ordered functional groups, dendrons can enhance gene complexation, drug loading, and stimuli-responsive behavior. In addition, outward-branching dendrons can support a high density of nonfouling polymers, such as poly(ethylene glycol), for serum stability and variable densities of multifunctional groups for multivalent cellular targeting and interactions. In this paper, we review the design considerations for dendron-lipid nanoparticles and dendron micelles formed from amphiphilic block copolymers intended for gene transfection and cancer drug delivery applications. These technologies are early in preclinical development and, as with other nanomedicines, face many obstacles on the way to clinical adoption. Nevertheless, the utility of dendron micelles for drug delivery remains relatively underexplored, and we believe there are significant and dramatic advancements to be made in tumor targeting with these platforms.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jin Woong Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, Wisconsin 53705, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Zhu Y, Liu C, Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019; 9:E790. [PMID: 31783573 PMCID: PMC6995517 DOI: 10.3390/biom9120790] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Human neuroscience has made remarkable progress in understanding basic aspects of functional organization; it is a renowned fact that the blood-brain barrier (BBB) impedes the permeation and access of most drugs to central nervous system (CNS) and that many neurological diseases remain undertreated. Therefore, a number of nanocarriers have been designed over the past few decades to deliver drugs to the brain. Among these nanomaterials, dendrimers have procured an enormous attention from scholars because of their nanoscale uniform size, ease of multi-functionalization, and available internal cavities. As hyper-branched 3D macromolecules, dendrimers can be maneuvered to transport diverse therapeutic agents, incorporating small molecules, peptides, and genes; diminishing their cytotoxicity; and improving their efficacy. Herein, the present review will give exhaustive details of extensive researches in the field of dendrimer-based vehicles to deliver drugs through the BBB in a secure and effectual manner. It is also a souvenir in commemorating Donald A. Tomalia on his 80th birthday.
Collapse
Affiliation(s)
- Yuefei Zhu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
- Department of Biomedical Engineering, Columbia University Medical Center, 3960 Broadway, New York, NY 10032, USA
| | - Chunying Liu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| |
Collapse
|
3
|
Fan X, Zhao Y, Xu W, Li L. Linear-dendritic block copolymer for drug and gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:943-59. [PMID: 26952501 DOI: 10.1016/j.msec.2016.01.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/31/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Dendrimers as a new class of polymeric materials have a highly ordered branched structure, exact molecular weight, multivalency and available internal cavities, which make them extensively used in biology and drug-delivery. Concurrent with the development of dendrimers, much more attention is drawn to a novel block copolymer which combines linear chains with dendritic macromolecules, the linear-dendritic block copolymer (LDBC). Because of the different solubility of the contrasting regions, the amphiphilic LDBCs could self-assemble to form aggregates with special core-shell structures which exhibit excellent properties different from traditional micelles, such as lower critical micelle concentration, prolonged circulation in the bloodstream, better biocompatibility, and lower toxicity. The present review briefly describes the type of LDBC, the self-assembly behavior in solution, and the application in delivery system including the application as drug carriers and gene vectors. The interactions between block copolymers and drugs are also summarized to better understand the release mechanism of drugs from the linear-dendritic block copolymers.
Collapse
Affiliation(s)
- Xiaohui Fan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province 250012, China
| | - Yanli Zhao
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province 250012, China
| | - Wei Xu
- Department of Pharmacy, Shandong Provincial Qian Foshan Hospital, Jinan, Shandong Province, China
| | - Lingbing Li
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan, Shandong Province 250012, China.
| |
Collapse
|