1
|
Olave B. DNA nanotechnology in ionic liquids and deep eutectic solvents. Crit Rev Biotechnol 2024; 44:941-961. [PMID: 37518062 DOI: 10.1080/07388551.2023.2229950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 08/01/2023]
Abstract
Nucleic acids have the ability to generate advanced nanostructures in a controlled manner and can interact with target sequences or molecules with high affinity and selectivity. For this reason, they have applications in a variety of nanotechnology applications, from highly specific sensors to smart nanomachines and even in other applications such as enantioselective catalysis or drug delivery systems. However, a common disadvantage is the use of water as the ubiquitous solvent. The use of nucleic acids in non-aqueous solvents offers the opportunity to create a completely new toolbox with unprecedented degrees of freedom. Ionic liquids (ILs) and deep eutectic solvents (DESs) are the most promising alternative solvents due to their unique electrolyte and solvent roles, as well as their ability to maintain the stability and functionality of nucleic acids. This review aims to be a comprehensive, critical, and accessible evaluation of how much this goal has been achieved and what are the most critical parameters for accomplishing a breakthrough.
Collapse
Affiliation(s)
- Beñat Olave
- University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
2
|
Zhong C, Luo S, Ye J, Liu C. Shape and size-controlled starch nanoparticles prepared by self-assembly in natural deep eutectic solvents: Effect and mechanism. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Chen X, Wu W, Liu L, Hao J, Dong S. DNA-involved thermotropic liquid crystals from catanionic vesicles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Tomé LC, Mecerreyes D. Emerging Ionic Soft Materials Based on Deep Eutectic Solvents. J Phys Chem B 2020; 124:8465-8478. [DOI: 10.1021/acs.jpcb.0c04769] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liliana C. Tomé
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Emami S, Shayanfar A. Deep eutectic solvents for pharmaceutical formulation and drug delivery applications. Pharm Dev Technol 2020; 25:779-796. [DOI: 10.1080/10837450.2020.1735414] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shahram Emami
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
El Achkar T, Fourmentin S, Greige-Gerges H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111028] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Prasad K, Mondal D, Sharma M, Freire MG, Mukesh C, Bhatt J. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents. Carbohydr Polym 2018; 180:328-336. [PMID: 29103512 PMCID: PMC6159887 DOI: 10.1016/j.carbpol.2017.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Ion gels and self-healing gels prepared using ionic liquids (ILs) and deep eutectic solvents (DESs) have been largely investigated in the past years due to their remarkable applications in different research areas. Herewith we provide an overview on the ILs and DESs used for the preparation of ion gels, highlight the preparation and physicochemical characteristics of stimuli responsive gel materials based on co-polymers and biopolymers, with special emphasis on polysaccharides and discuss their applications. Overall, this review summarizes the fundamentals and advances in ion gels with switchable properties prepared using ILs or DESs, as well as their potential applications in electrochemistry, in sensing devices and as drug delivery vehicles.
Collapse
Affiliation(s)
- Kamalesh Prasad
- Natural Products and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India; AcSIR- Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India.
| | - Dibyendu Mondal
- Sustainable Energy Materials and Processes Group, Centre for Nano and Material Science, Jain University, Bangalore 562112, India
| | - Mukesh Sharma
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G Freire
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chandrakant Mukesh
- Department of Chemical Engineering, Indian Institute of Technology, Delhi 110016, India
| | - Jitkumar Bhatt
- Natural Products and Green Chemistry Division, CSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India; AcSIR- Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar 364002, Gujarat, India
| |
Collapse
|
9
|
Sanchez-Fernandez A, Hammond OS, Jackson AJ, Arnold T, Doutch J, Edler KJ. Surfactant-Solvent Interaction Effects on the Micellization of Cationic Surfactants in a Carboxylic Acid-Based Deep Eutectic Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14304-14314. [PMID: 29182879 DOI: 10.1021/acs.langmuir.7b03254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Deep eutectic solvents have been demonstrated to support amphiphile self-assembly, providing potential alternatives as structure-directing agents in the synthesis of nanostructures, and drug delivery. Here we have expanded on this recent research to investigate the self-assembly of alkyltrimethylammonium bromide surfactants in choline chloride:malonic acid deep eutectic solvent and mixtures of the solvent with water. Surface tension and small-angle neutron scattering were used to determine the behavior of the amphiphiles. Surfactants were found to remain active in the solvent, and surface tension measurements revealed changes in the behavior of the surfactants with different levels of hydration. Small-angle neutron scattering shows that in this solvent the micelle shape depends on the surfactant chain length, varying from globular micelles (aspect ratio ∼2) for short chain surfactants to elongated micelles (aspect ratio ∼14) for long chain surfactants even at low surfactant concentration. We suggest that the formation of elongated micelles can be explained through the interaction of the solvent with the surfactant headgroup, since ion-ion interactions between surfactant headgroups and solvent may modify the morphology of the micelles. The presence of water in the deep eutectic solvents promotes an increase in the charge density at the micelle interface and therefore the formation of less elongated, globular micelles.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Department of Chemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
- European Spallation Source , Box 176, 22100 Lund, Sweden
| | - Oliver S Hammond
- Centre for Sustainable Chemical Technologies, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| | - Andrew J Jackson
- European Spallation Source , Box 176, 22100 Lund, Sweden
- Department of Physical Chemistry, Lund University , SE-221 00 Lund, Sweden
| | - Thomas Arnold
- European Spallation Source , Box 176, 22100 Lund, Sweden
| | - James Doutch
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Didcot OX11 0QX, U.K
| | - Karen J Edler
- Department of Chemistry, University of Bath , Claverton Down, Bath BA2 7AY, U.K
- Centre for Sustainable Chemical Technologies, University of Bath , Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
10
|
Sanchez-Fernandez A, Edler KJ, Arnold T, Heenan RK, Porcar L, Terrill NJ, Terry AE, Jackson AJ. Micelle structure in a deep eutectic solvent: a small-angle scattering study. Phys Chem Chem Phys 2016; 18:14063-73. [DOI: 10.1039/c6cp01757f] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Choline chloride:urea deep eutectic solvent provides a novel media for surfactant self-assembly with micelle morphology tunable by adding water.
Collapse
Affiliation(s)
| | - K. J. Edler
- Department of Chemistry
- University of Bath
- Bath
- UK
| | | | | | - L. Porcar
- Institut Laue-Langevin
- Grenoble
- France
| | | | - A. E. Terry
- ISIS Spallation Neutron Source
- Didcot OX11 ODE
- UK
| | - A. J. Jackson
- European Spallation Source
- Lund
- Sweden
- Department of Physical Chemistry
- Lund University
| |
Collapse
|
11
|
Das AK, Sharma M, Mondal D, Prasad K. Deep eutectic solvents as efficient solvent system for the extraction of κ-carrageenan from Kappaphycus alvarezii. Carbohydr Polym 2015; 136:930-5. [PMID: 26572431 DOI: 10.1016/j.carbpol.2015.09.114] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
Abstract
Three different deep eutectic solvents (DESs) prepared by the complexation of choline chloride with urea, ethylene glycol and glycerol along with their hydrated counterparts were used for the selective extraction of κ-carrageenan from Kappaphycus alvarezii. Upon comparison of the quality of the polysaccharide with the one obtained using water as extraction media as well as the one extracted using widely practiced conventional method, it was found that, the physicochemical as well as rheological properties of κ-carrageenan obtained using DESs as solvents was at par to the one obtained using conventional method and was superior in quality when compared to κ-carrageenan obtained using water as solvent. Considering the tedious nature of the extraction method employed in conventional extraction process, the DESs can be considered as suitable alternative solvents for the facile extraction of the polysaccharide directly from the seaweed. However, among the hydrated and non-hydrated DESs, the hydrated ones were found to be more effective in comparison to their non-hydrated counterparts.
Collapse
Affiliation(s)
- Arun Kumar Das
- Analytical Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India
| | - Mukesh Sharma
- Marine Biotechnology & Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, India
| | - Dibyendu Mondal
- Marine Biotechnology & Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, India
| | - Kamalesh Prasad
- Marine Biotechnology & Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar 364 002, India; Academy of Scientific and Innovative Research (AcSIR), Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, India.
| |
Collapse
|