1
|
Versino F, Ortega F, Monroy Y, Rivero S, López OV, García MA. Sustainable and Bio-Based Food Packaging: A Review on Past and Current Design Innovations. Foods 2023; 12:foods12051057. [PMID: 36900574 PMCID: PMC10000825 DOI: 10.3390/foods12051057] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Food loss and waste occur for many reasons, from crop processing to household leftovers. Even though some waste generation is unavoidable, a considerable amount is due to supply chain inefficiencies and damage during transport and handling. Packaging design and materials innovations represent real opportunities to reduce food waste within the supply chain. Besides, changes in people's lifestyles have increased the demand for high-quality, fresh, minimally processed, and ready-to-eat food products with extended shelf-life, that need to meet strict and constantly renewed food safety regulations. In this regard, accurate monitoring of food quality and spoilage is necessary to diminish both health hazards and food waste. Thus, this work provides an overview of the most recent advances in the investigation and development of food packaging materials and design with the aim to improve food chain sustainability. Enhanced barrier and surface properties as well as active materials for food conservation are reviewed. Likewise, the function, importance, current availability, and future trends of intelligent and smart packaging systems are presented, especially considering biobased sensor development by 3D printing technology. In addition, driving factors affecting fully biobased packaging design and materials development and production are discussed, considering byproducts and waste minimization and revalorization, recyclability, biodegradability, and other possible ends-of-life and their impact on product/package system sustainability.
Collapse
Affiliation(s)
- Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
- Correspondence:
| | - Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Yuliana Monroy
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
| | - Sandra Rivero
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7, Bahía Blanca 8000, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116, La Plata 1900, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
2
|
Modified Starch-Based Adhesives: A Review. Polymers (Basel) 2022; 14:polym14102023. [PMID: 35631906 PMCID: PMC9147152 DOI: 10.3390/polym14102023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/02/2023] Open
Abstract
Consumer trends towards environmentally friendly products are driving plastics industries to investigate more benign alternatives to petroleum-based polymers. In the case of adhesives, one possibility to achieve sustainable production is to use non-toxic, low-cost starches as biodegradable raw materials for adhesive production. While native starch contains only hydroxyl groups and has limited scope, chemically modified starch shows superior water resistance properties for adhesive applications. Esterified starches, starches with ester substituents, can be feasibly produced and utilized to prepare bio-based adhesives with improved water resistance. Syntheses of esterified starch materials can involve esterification, transesterification, alkylation, acetylation, succinylation, or enzymatic reactions. The main focus of this review is on the production of esterified starches and their utilization in adhesive applications (for paper, plywood, wood composites, fiberboard, and particleboard). The latter part of this review discusses other processes (etherification, crosslinking, grafting, oxidation, or utilizing biobased coupling agents) to prepare modified starches that can be further applied in adhesive production. Further discussion on the characteristics of modified starch materials and required processing methods for adhesive production is also included.
Collapse
|
3
|
Droesbeke MA, Aksakal R, Simula A, Asua JM, Du Prez FE. Biobased acrylic pressure-sensitive adhesives. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Chen TTD, Carrodeguas LP, Sulley GS, Gregory GL, Williams CK. Bio-based and Degradable Block Polyester Pressure-Sensitive Adhesives. Angew Chem Int Ed Engl 2020; 59:23450-23455. [PMID: 32886833 PMCID: PMC7756385 DOI: 10.1002/anie.202006807] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/14/2020] [Indexed: 12/13/2022]
Abstract
A new class of bio-based fully degradable block polyesters are pressure-sensitive adhesives. Bio-derived monomers are efficiently polymerized to make block polyesters with controlled compositions. They show moderate to high peel adhesions (4-13 N cm-1 ) and controllable storage and loss moduli, and they are removed by adhesive failure. Their properties compare favorably with commercial adhesives or bio-based polyester formulations but without the need for tackifier or additives.
Collapse
Affiliation(s)
- Thomas T. D. Chen
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RdOxfordOX1 3TAUK
| | - Leticia Peña Carrodeguas
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RdOxfordOX1 3TAUK
| | - Gregory S. Sulley
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RdOxfordOX1 3TAUK
| | - Georgina L. Gregory
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RdOxfordOX1 3TAUK
| | - Charlotte K. Williams
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RdOxfordOX1 3TAUK
| |
Collapse
|
5
|
Chen TTD, Carrodeguas LP, Sulley GS, Gregory GL, Williams CK. Bio‐based and Degradable Block Polyester Pressure‐Sensitive Adhesives. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas T. D. Chen
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Leticia Peña Carrodeguas
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Gregory S. Sulley
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Georgina L. Gregory
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| | - Charlotte K. Williams
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Rd Oxford OX1 3TA UK
| |
Collapse
|
6
|
Lomège J, Lapinte V, Negrell C, Robin JJ, Caillol S. Fatty Acid-Based Radically Polymerizable Monomers: From Novel Poly(meth)acrylates to Cutting-Edge Properties. Biomacromolecules 2018; 20:4-26. [PMID: 30273485 DOI: 10.1021/acs.biomac.8b01156] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The increasing price of barrels of oil, global warming, and other environmental problems favor the use of renewable resources to replace the petroleum-based polymers used in various applications. Recently, fatty acids (FAs) and their derivatives have appeared among the most promising candidates to afford novel and innovative bio-based (co)polymers because of their ready availability, their low toxicity, and their high versatility. However, the current literature mostly focused on FA-based polymers prepared by condensation polymerization or oxypolymerization, while only a few works have been devoted to radical polymerization due to the low reactivity of FAs through radical process. Thus, the aim of this Review is to give an overview of (i) the most common synthetic pathways reported in the literature to provide suitable monomers from FAs and their derivatives for radical polymerization, (ii) the available radical processes to afford FA-based (co)polymers, and (iii) the different applications in which FA-based (co)polymers have been used since the past few years.
Collapse
Affiliation(s)
- Juliette Lomège
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Vincent Lapinte
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Claire Negrell
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Jean-Jacques Robin
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| | - Sylvain Caillol
- Institut Charles Gerhardt Montpellier UMR 5253, Univ Montpellier CNRS ENSCM , Université de Montpellier , CC1702, Place Eugène Bataillon , 34095 Montpellier Cedex 5 , France
| |
Collapse
|
7
|
Wang Y, Weng F, Li J, Lai L, Yu W, Severtson SJ, Wang WJ. Influence of Phase Separation on Performance of Graft Acrylic Pressure-Sensitive Adhesives with Various Copolyester Side Chains. ACS OMEGA 2018; 3:6945-6954. [PMID: 31458860 PMCID: PMC6644624 DOI: 10.1021/acsomega.8b00737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/12/2018] [Indexed: 06/10/2023]
Abstract
Acrylic pressure-sensitive adhesives with various polyester side-chain lengths were synthesized to investigate the effect of branching on phase separation and polymer mechanical performance. The polyester macromonomers (MMs) were produced through ring-opening co-polymerizations of l-lactide (l-LA) and ε-caprolactone (ε-CL) initiated with 2-hydroxyethyl methacrylate (HEMA), which provides the polyester chains with terminal vinyl groups. By varying the HEMA content, a range of MM chain lengths constructed from L10C4 (five l-LA and four ε-CL units) to L100C40 were obtained at a constant monomer mole ratio. Copolymerization of 2-ethylhexyl acrylate and acrylic acid with these MMs at constant mass composition provided a series of comb copolymers consisting of acrylic backbones with polyester branches of various chain lengths. Characterization of thin films cast from the polymers using thermal analysis and scanning probe microscopy showed a transition from a homogeneous phase to the formation of distinct microphases with increasing branching chain lengths. Rheological analysis of the linear viscoelastic responses was also used through small-amplitude oscillatory shear, and dynamic master curves were constructed by time-temperature superposition. The rheological data were also consistent with phase separation for the longer side-chain lengths of L50C20 and L100C40. The extra elastic contribution at low frequency and the temperature dependence of a T both show obviously effect of separated phases. Performance testing of polymer films showed that the chain extension resulted in a significant increase in both peel strength and shear resistance, which was accompanied by a modest decrease in film tackiness. The results demonstrate that tailoring branch chain structures provide a promising means for controlling the properties of the high-biomass content adhesive polymers.
Collapse
Affiliation(s)
- Yanjiao Wang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Feiyin Weng
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Jiaxu Li
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Lei Lai
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| | - Wei Yu
- Advanced
Rheology Institute, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Steven John Severtson
- Department
of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, Minnesota 55108, United States
| | - Wen-Jun Wang
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
8
|
Ciannamea EM, Ruseckaite RA. Pressure Sensitive Adhesives Based on Epoxidized Soybean Oil: Correlation Between Curing Conditions and Rheological Properties. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Emiliano M. Ciannamea
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA); Universidad Nacional de Mar del Plata-CONICET; Avenida Juan B. Justo 4302, B7608FDQ, Mar del Plata Argentina
| | - Roxana A. Ruseckaite
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA); Universidad Nacional de Mar del Plata-CONICET; Avenida Juan B. Justo 4302, B7608FDQ, Mar del Plata Argentina
| |
Collapse
|
9
|
Ouzas A, Niinivaara E, Cranston ED, Dubé MA. In Situ Semibatch Emulsion Polymerization of 2-Ethyl Hexyl Acrylate/n-Butyl Acrylate/Methyl Methacrylate/Cellulose Nanocrystal Nanocomposites for Adhesive Applications. MACROMOL REACT ENG 2018. [DOI: 10.1002/mren.201700068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alexandra Ouzas
- Department of Chemical and Biological Engineering; Centre for Catalysis Research and Innovation; University of Ottawa; 161 Louis Pasteur Pvt Ottawa Ontario K1N 6N5 Canada
| | - Elina Niinivaara
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Emily D. Cranston
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton Ontario L8S 4L7 Canada
| | - Marc A. Dubé
- Department of Chemical and Biological Engineering; Centre for Catalysis Research and Innovation; University of Ottawa; 161 Louis Pasteur Pvt Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
10
|
Optimization of Soybean Oil Based Pressure-Sensitive Adhesives Using a Full Factorial Design. J AM OIL CHEM SOC 2017. [DOI: 10.1007/s11746-017-2966-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Walther S, Strehmel N, Schlorholz M, Strehmel B, Strehmel V. Photopolymerization of Functionalized Monomers Derived from Oleic Acid. J PHOTOPOLYM SCI TEC 2016. [DOI: 10.2494/photopolymer.29.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Medeiros AM, Machado F, Rubim JC. Synthesis and characterization of a magnetic bio-nanocomposite based on magnetic nanoparticles modified by acrylated fatty acids derived from castor oil. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|