Song HB, Baranek A, Worrell BT, Bowman CN, Cook WD. Photopolymerized Triazole-Based Glassy Polymer Networks with Superior Tensile Toughness.
ADVANCED FUNCTIONAL MATERIALS 2018;
28:1801095. [PMID:
31105506 PMCID:
PMC6519945 DOI:
10.1002/adfm.201801095]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 05/28/2023]
Abstract
Photopolymerization is a ubiquitous, indispensable technique widely applied in applications from coatings, inks, and adhesives to thermosetting restorative materials for medical implants, and the fabrication of complex macro-scale, microscale, and nanoscale 3D architectures via additive manufacturing. However, due to the brittleness inherent in the dominant acrylate-based photopolymerized networks, a significant need exists for higher performance resin/oligomer formulations to create tough, defect-free, mechanically ductile, thermally and chemically resistant, high modulus network polymers with rapid photocuring kinetics. This study presents densely cross-linked triazole-based glassy photopolymers capable of achieving preeminent toughness of ≈70 MJ m-3 and 200% strain at ambient temperature, comparable to conventional tough thermoplastics. Formed either via photoinitiated copper(I)-catalyzed cycloaddition of monomers containing azide and alkyne groups (CuAAC) or via photoinitiated thiol-ene reactions from monomers containing triazole rings, these triazole-containing thermosets completely recover their original dimensions and mechanical behavior after repeated deformations of 50% strain in the glassy state over multiple thermal recovery-strain cycles.
Collapse