1
|
Liu N, Wang D, Li Z, Xing Y, Ma Q, Zhang Z. A novel Bi 2S 3 QD-based DPV/ECL synchronous dual-mode molecularly imprinted sensor for enrofloxacin detection in eggs. Food Chem 2024; 444:138594. [PMID: 38309076 DOI: 10.1016/j.foodchem.2024.138594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Herein, a novel electrochemiluminescence (ECL) and differential pulse voltammetry (DPV) dual-mode-based molecularly imprinted (MIP) sensor had been established for the detection of enrofloxacin (ENR) in eggs. Firstly, bismuth sulfide quantum dots (Bi2S3 QDs) as ECL luminophore were synthesized. Furthermore, a MIP film with ionic liquid (ILs), Bi2S3 QDs, and ENR was prepared via the electrochemical polymerization procedure on the electrode. As ENR was identified and captured by the imprinted cavities, the electron transfer pathway was blocked on the electrochemical interface, resulting in the decrease of both DPV signals and ECL signals. As a novel synchronous dual-mode sensing strategy, a pulsed voltage was applied to produce both the DPV signal and ECL signal simultaneously. The ECL and DPV response showed the good linear relationships with the concentration of ENR with the ranges of 0.5 Nm-25 μM and 5 nM-25 μΜ and the detection limits of 0.13 nM and 1.59 nM, respectively.
Collapse
Affiliation(s)
- Ning Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Dongyu Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yue Xing
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zhiquan Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Yin Q, Wang Y, Li X, Yang D, Yang Y, Yang C, Zhu Y. Dual-Emission Carbon-Dot Ratiometric Fluorescence Sensor for Morphine Recognition in Biological Samples. BIOSENSORS 2023; 13:143. [PMID: 36671978 PMCID: PMC9856496 DOI: 10.3390/bios13010143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Herein, a novel nitr[ogen-doped carbon dot (N-CD) fluorescence sensor with a dual emission ratio is developed using the microwave-assisted synthesis of m-phenylenediamine and spermidine. As a result of the fluorescence inner filtration effect (IFE) effect between morphine (MOR) and N-CD, the blue fluorescence of N-CDs at 350 nm was reduced in the presence of MOR, whereas the fluorescence of N-CDs at 456 nm increased substantially. The results demonstrated that the approach has a tremendous potential and that the linear range of MOR detection is 0.25-25 µg/mL, with a 71.8 ng/mL detection limit. Under UV light, the blue fluorescent system is easily visible to the naked eye. More significantly, the sensor proved successful in providing satisfactory results for the speciation measurement of MOR in a variety of biological samples.
Collapse
Affiliation(s)
- Qinhong Yin
- Faculty of Narcotics Control, Yunnan Police College, Kunming 650223, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuerong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Cheng Yang
- Faculty of Narcotics Control, Yunnan Police College, Kunming 650223, China
| | - Yanqin Zhu
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China
| |
Collapse
|
3
|
Electrosynthesis of poly (4-amino-3-nitrostyrene) film and its characterization. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
|
5
|
Buensuceso CE, Tiu BDB, Lee LP, Sabido PMG, Nuesca GM, Caldona EB, Del Mundo FR, Advincula RC. Electropolymerized-molecularly imprinted polymers (E-MIPS) as sensing elements for the detection of dengue infection. Anal Bioanal Chem 2021; 414:1347-1357. [PMID: 34750643 DOI: 10.1007/s00216-021-03757-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
A straightforward in situ detection method for dengue infection was demonstrated through the molecular imprinting of a dengue nonstructural protein 1 (NS1) epitope into an electropolymerized molecularly imprinted polyterthiophene (E-MIP) film sensor. The key enabling step in the sensor fabrication is based on an epitope imprinting strategy, in which short peptide sequences derived from the original target molecules were employed as the main template for detection and analysis. The formation of the E-MIP sensor films was facilitated using cyclic voltammetry (CV) and monitored in situ by electrochemical quartz crystal microbalance (EC-QCM). Surface properties were analyzed using different techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and polarization modulation-infrared reflection-adsorption (PM-IRRAS). The standard calibration curve (R = 0.9830) was generated for the detection of the epitope, Ac-VHTWTEQYKFQ-NH2, with a linear range of 0.2 to 30 μg/mL and detection limit of 0.073 μg/mL. A separate calibration curve (R = 0.9786) was obtained using spiked buffered solutions of dengue NS1 protein, which resulted in a linear range of 0.2 to 10 μg/mL and a detection limit of 0.056 μg/mL. The fabricated E-MIP sensor exhibited long-term stability, high sensitivity, and good selectivity towards the targeted molecules. These results indicated that the formation of the exact and stable cavity imprints in terms of size, shape, and functionalities was successful. In our future work, we aim to use our E-MIP sensors for NS1 detection in real-life samples such as serum and blood.
Collapse
Affiliation(s)
- Clarisse E Buensuceso
- Institute of Chemistry, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Brylee David B Tiu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720-1762, USA
| | - Luke P Lee
- Department of Bioengineering, University of California, Berkeley, CA, 94720-1762, USA
| | - Portia Mahal G Sabido
- Institute of Chemistry, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Guillermo M Nuesca
- Institute of Chemistry, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Eugene B Caldona
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA
| | - Florian R Del Mundo
- Institute of Chemistry, College of Science, University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Chemical and Biomolecular Engineering and Joint Institute for Advanced Materials, University of Tennessee, Knoxville, TN, 37996, USA.
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
6
|
Salajegheh M, Kazemipour M, Foroghi MM, Ansari M. Morphine Sensing by a Green Modified Molecularly Imprinted Poly L-Lysine/Sodium Alginate-activated Carbon/Glassy Carbon Electrode Based on Computational Design. ELECTROANAL 2018. [DOI: 10.1002/elan.201800395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maryam Salajegheh
- Department of Chemistry; Kerman Branch; Islamic Azad University; Kerman Iran
| | - Maryam Kazemipour
- Department of Chemistry; Kerman Branch; Islamic Azad University; Kerman Iran
| | | | - Mehdi Ansari
- Department of Drug and Food Control; Faculty of Pharmacy; Kerman University of Medical Sciences; Kerman Iran
| |
Collapse
|
7
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
8
|
Yu B, Ge M, Li P, Xie Q, Yang L. Development of surface-enhanced Raman spectroscopy application for determination of illicit drugs: Towards a practical sensor. Talanta 2018; 191:1-10. [PMID: 30262036 DOI: 10.1016/j.talanta.2018.08.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/17/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been widely applied to identify or detect illicit drugs, because of the ability for highly specific molecular fingerprint and independence of aqueous solutions impact. We summarize the progress in determination of illicit drugs using SERS, including trace illicit drugs, suspicious objects and drugs or their metabolites in real biological system (urine, saliva and so on). Even though SERS detection of illicit drugs in real samples still remains a huge challenge because of the complex unknown environment, the efficient sample separation and the improved hand-held Raman analyzer will provide the possibility to make SERS a practically analytical technique. Moreover, we put forward a prospective overview for future perspectives of SERS as a practical sensor for illicit drugs determination. Perhaps the review is not exhaustive, we expect to help researchers to understand the evolution and challenges in this field and further interest in promoting Raman and SERS as a practical analyzer for convenient and automated illicit drugs identification.
Collapse
Affiliation(s)
- Borong Yu
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Meihong Ge
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Pan Li
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Qiwen Xie
- Institute of Forensic of Anhui Public Security Department, Hefei 230061, PR China.
| | - Liangbao Yang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|