1
|
Abtahi S, Hendeniya N, Mahmud ST, Mogbojuri G, Iheme CL, Chang B. Metal-Coordinated Polymer-Inorganic Hybrids: Synthesis, Properties, and Application. Polymers (Basel) 2025; 17:136. [PMID: 39861209 PMCID: PMC11768156 DOI: 10.3390/polym17020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes. In contrast, heterogeneous methods are post-processing techniques that provide high area selectivity for inorganic precursors, allowing precise integration within polymer matrices. Finally, we highlight the role of hybrid linkers, namely metallosupramolecular polymers, in creating structural diversity. These can be organized into three main groups: metal-organic frameworks (MOFs), coordination polymers (CPs), and supramolecular coordination complexes (SCCs). Each of these groups introduces unique structural and functional properties that expand the potential applications of hybrid materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Boyce Chang
- Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022; 14:jfb14010012. [PMID: 36662059 PMCID: PMC9862060 DOI: 10.3390/jfb14010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanotechnology, various types of polymer-based drug delivery systems have been designed for biomedical applications. Polymer-based drug delivery systems with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted effects and combined with other therapeutic and imaging agents for cancer theranostics. As an effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied due to its rich surface amines and excellent water solubility. In this work, we summarize the surface modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider the outlook and challenges relating to PEI-based drug delivery systems.
Collapse
|
3
|
Rahim MA, Jan N, Khan S, Shah H, Madni A, Khan A, Jabar A, Khan S, Elhissi A, Hussain Z, Aziz HC, Sohail M, Khan M, Thu HE. Recent Advancements in Stimuli Responsive Drug Delivery Platforms for Active and Passive Cancer Targeting. Cancers (Basel) 2021; 13:670. [PMID: 33562376 PMCID: PMC7914759 DOI: 10.3390/cancers13040670] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
Collapse
Affiliation(s)
- Muhammad Abdur Rahim
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Nasrullah Jan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Arshad Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (M.A.R.); (N.J.); (S.K.); (H.S.); (A.K.)
| | - Abdul Jabar
- College of Pharmacy, University of Sargodha, Sargodha 40100, Punjab, Pakistan;
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville 3631, Durban 4000, South Africa
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health and Office of VP for Research and Graduate Studies, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Heather C Aziz
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Khyber Pakhtunkhwa, Pakistan;
| | - Mirazam Khan
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Hnin Ei Thu
- Research and Innovation Department, Lincolon University College, Petaling Jaya 47301, Selangor, Malaysia;
- Innoscience Research Institute, Skypark, Subang Jaya 47650, Selangor, Malaysia
| |
Collapse
|
4
|
Cao M, Gao Y, Qiu N, Shen Y, Shen P. Folic acid directly modified low molecular weight of polyethyleneimine for targeted pDNA delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Zhang P, Xu Q, Li X, Wang Y. pH-responsive polydopamine nanoparticles for photothermally promoted gene delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110396. [PMID: 31924025 DOI: 10.1016/j.msec.2019.110396] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Recently, stimuli-responsive gene carriers have been widely studied to overcome the extra- and intracellular barriers in cancer treatment. In this study, we modified polydopamine nanoparticles with low-molecular weight polyethylenimine (PEI1.8k) and polyethylene glycol-phenylboronic acid (PEG-PBA) to prepare pH-responsive gene carrier PDANP-PEI-rPEG. PBA and polydopamine could form pH-responsive boronate ester bonds. Non-responsive PDANP-PEI-nPEG and non-PEGylated PDANP-PEI were also studied as control. Both PDANP-PEI-rPEG/DNA and PDANP-PEI-nPEG/DNA complexes remained stable in the pH environment of blood circulation or extracellular delivery (pH 7.4) owing to the PEG modification. And after being internalized into endosomes, the boronate ester bonds could be cleaved. The pH responsive ability of PDANP-PEI-rPEG might facilitate complexes dissociation and gene release inside cells. The transfection level of PDANP-PEI-rPEG/DNA complexes was about 100 times higher than that of PDANP-PEI-nPEG/DNA complexes with the same mass ratios. Moreover, after NIR light irradiation at the power density of 2.6 W/cm2 for 20 min, the good photothermal conversion ability of PDANP resulted in quick endosomal escape. The transfection level of PDANP-PEI-rPEG/DNA complexes doubled, even higher than that of lipofectamine 2000/DNA complexes. This was also confirmed by Bafilomycin A1 inhibition test and CLSM observation. In response to the acidic pH within cancer cells and the NIR light irradiation, the PDANP-PEI-rPEG carrier could overcome multiple obstacles in gene delivery, which was promising for further application in gene therapy.
Collapse
Affiliation(s)
- Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Qinan Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xinfang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
6
|
Zhi X, Liu P, Li Y, Li P, Yuan J, Lin J. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1920-1934. [DOI: 10.1080/09205063.2018.1519987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xuelian Zhi
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Pengcheng Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yanmei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jiantao Lin
- College of pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, Qu C, Liu Y, Zhang X. Nucleolin-Targeting AS1411-Aptamer-Modified Graft Polymeric Micelle with Dual pH/Redox Sensitivity Designed To Enhance Tumor Therapy through the Codelivery of Doxorubicin/TLR4 siRNA and Suppression of Invasion. Mol Pharm 2018; 15:314-325. [PMID: 29250957 DOI: 10.1021/acs.molpharmaceut.7b01093] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this article, a novel graft polymeric micelle with targeting function ground on aptamer AS1411 was synthesized. The micelle was based on chitosan-ss-polyethylenimine-urocanic acid (CPU) with dual pH/redox sensitivity and targeting effects. This micelle was produced for codelivering Toll-like receptor 4 siRNA (TLR4-siRNA) and doxorubicin (Dox). In vitro investigation revealed the sustained gene and drug release from Dox-siRNA-loaded micelles under physiological conditions, and this codelivery nanosystem exhibited high dual pH/redox sensitivity, rapid intracellular drug release, and improved cytotoxicity against A549 cells in vitro. Furthermore, the micelles loaded with TLR4-siRNA inhibited the migration and invasion of A549. Excellent tumor penetrating efficacy was also noted in the A549 tumor spheroids and solid tumor slices. In vivo, multiple results demonstrated the excellent tumor-targeting ability of AS1411-chitosan-ss-polyethylenimine-urocanic acid (ACPU) micelle in tumor tissues. The micelles exhibited excellent antitumor efficacy and low toxicity in the systemic circulation in lung-tumor-bearing BALB/c mice. These results conclusively demonstrated the great potential of the new graft copolymer micelle with targeting function for the targeted and efficient codelivery of chemotherapeutic drugs and genes in cancer treatment.
Collapse
Affiliation(s)
- Shudi Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhaoxiang Ren
- Jiangsu Key Laboratory for Translational Research and Therapy for Neuropsycho-disorders & Department of Pharmacology College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, P. R. China
| | - Mengtian Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Ying Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Bengang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Weiliang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Chenxi Qu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Yan R, Wang Z, Du Z, Wang H, Cheng X, Xiong J. A biomimetic fluorescent chemosensor for highly sensitive zinc(ii) detection and its application for cell imaging. RSC Adv 2018; 8:33361-33367. [PMID: 35548108 PMCID: PMC9086477 DOI: 10.1039/c8ra06501b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023] Open
Abstract
To fabricate a novel biomimetic fluorescent chemosensor, PSaAEMA-co-PMPC was synthesized via atom transfer radical polymerization, and this copolymer could be used for the detection of zinc(ii) and cell imaging. A series tests with various metal ions verified the specific fluorescence response behavior. This novel biomimetic fluorescent chemosensor exhibits excellent selectivity for Zn2+ ions over a wide range of tested metal ions in an aqueous solution. Moreover, cytotoxicity and bio-imaging tests were conducted to study the potential bio-application of the chemosensor. Owing to the biomimetic portion (phosphorylcholine), this copolymer possesses outstanding biocompatibility and could clearly image cells. The results indicated that PSaAEMA-co-PMPC has great potential for application in zinc(ii) detection and cell imaging. To fabricate a novel biomimetic fluorescent chemosensor, PSaAEMA-co-PMPC was synthesized via atom transfer radical polymerization, and this copolymer could be used for the detection of zinc(ii) and cell imaging.![]()
Collapse
Affiliation(s)
- Rui Yan
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Zhi Wang
- State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- China
| | - Zongliang Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Haibo Wang
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Xu Cheng
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Junjie Xiong
- Department of Pancreatic Surgery
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|