1
|
Poellmann MJ, Javius-Jones K, Hopkins C, Lee JW, Hong S. Dendritic-Linear Copolymer and Dendron Lipid Nanoparticles for Drug and Gene Delivery. Bioconjug Chem 2022; 33:2008-2017. [PMID: 35512322 DOI: 10.1021/acs.bioconjchem.2c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymers constitute a diverse class of macromolecules that have demonstrated their unique advantages to be utilized for drug or gene delivery applications. In particular, polymers with a highly ordered, hyperbranched structure─"dendrons"─offer significant benefits to the design of such nanomedicines. The incorporation of dendrons into block copolymer micelles can endow various unique properties that are not typically observed from linear polymer counterparts. Specifically, the dendritic structure induces the conical shape of unimers that form micelles, thereby improving the thermodynamic stability and achieving a low critical micelle concentration (CMC). Furthermore, through a high density of highly ordered functional groups, dendrons can enhance gene complexation, drug loading, and stimuli-responsive behavior. In addition, outward-branching dendrons can support a high density of nonfouling polymers, such as poly(ethylene glycol), for serum stability and variable densities of multifunctional groups for multivalent cellular targeting and interactions. In this paper, we review the design considerations for dendron-lipid nanoparticles and dendron micelles formed from amphiphilic block copolymers intended for gene transfection and cancer drug delivery applications. These technologies are early in preclinical development and, as with other nanomedicines, face many obstacles on the way to clinical adoption. Nevertheless, the utility of dendron micelles for drug delivery remains relatively underexplored, and we believe there are significant and dramatic advancements to be made in tumor targeting with these platforms.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Caroline Hopkins
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Jin Woong Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States.,Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison, Wisconsin 53705, United States.,Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Hedrick JL, Piunova V, Park NH, Erdmann T, Arrechea PL. Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. ACS Macro Lett 2022; 11:368-375. [PMID: 35575375 DOI: 10.1021/acsmacrolett.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aliphatic polycarbonates represent an important class of materials with diverse applications ranging from battery electrolytes, polyurethane intermediates, and materials for biomedical applications. These materials can be produced via the ring-opening polymerization (ROP) of six- to eight-membered cyclic carbonates derived from precursor 1,3- and 1,5-diols. These diols can contain a range of functional groups depending on the desired thermal, mechanical, and solution properties. Generally, the ring closure to form the cyclic carbonate requires the use of undesirable and hazardous reagents. Advances in synthetic methodologies and catalysis have enabled the use of carbon dioxide (CO2) to perform these transformations with a high conversion of diol to cyclic carbonate, yet modest isolated yields due to oligomerization side reactions. In this Letter, we evaluate a series of bases in the presence of p-toluenesulfonyl chloride and the appropriate diol to better understand their effect on the yield and presence of oligomer byproducts during cyclic carbonate formation from CO2. From this study, N,N-tetramethylethylenediamine (TMEDA) was identified as an optimal base, facilitating the preparation of a diverse array of both six- and eight-membered carbonates from CO2 within 10 to 15 min. The robust conditions for both, the preparation of the diol precursor, and the TMEDA-mediated carbonate synthesis enabled readily telescoping the two-step reaction sequence, greatly simplifying the process of monomer preparation.
Collapse
Affiliation(s)
- James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Victoria Piunova
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H. Park
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Tim Erdmann
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Pedro L. Arrechea
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
3
|
Tan EWP, Hedrick JL, Arrechea PL, Erdmann T, Kiyek V, Lottier S, Yang YY, Park NH. Overcoming Barriers in Polycarbonate Synthesis: A Streamlined Approach for the Synthesis of Cyclic Carbonate Monomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eddy W. P. Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Pedro L. Arrechea
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Tim Erdmann
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Vivien Kiyek
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Simon Lottier
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Nathaniel H. Park
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
4
|
Mencia G, Lozano-Cruz T, Valiente M, Jiménez JL, de la Mata FJ, Muñoz-Fernández M, Cano J, Gillies E, Gómez R. Evaluation of pH-dependent amphiphilic carbosilane dendrons in micelle formation, drug loading and HIV-1 infection. Org Biomol Chem 2020; 18:9639-9652. [PMID: 33206746 DOI: 10.1039/d0ob01867h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
New amphiphilic carbosilane dendrons with pH-dependent behaviour based on the presence of carboxylate (propionate or succinate) groups at their peripheries and a fatty acid at the focal point were developed. In the presence of salts, they were able to form micelles with critical aggregation concentrations increasing with increasing dendron generation. Their thermodynamic parameters were calculated from surface tension measurements and their diameters at different pHs were measured by dynamic light scattering. These micelles were stable at basic pH but degraded under acidic conditions. No significant differences were found for the propionate and succinate based dendron micelles at basic or acidic pH, but the succinate dendron assemblies were more stable at neutral pH. The properties of these systems as drug nano-carriers were studied using both hydrophilic and hydrophobic molecules, and the drug loading varied with the structure and charge of the drug. In addition, due to the presence of multiple negative charges, the dendrons exhibited anti-HIV activity. Higher generation dendrons with more peripheral carboxylates that were not assembled into micelles were more active than micelles composed of lower generation dendrons having fewer peripheral carboxylates.
Collapse
Affiliation(s)
- Gabriel Mencia
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhou M, Ling F, Li J. A supramolecular diagnosis and treatment integrated agent: Synthesis and self-assembly of stimulus-responsive star-shaped copolymer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Li B, Xu Q, Li X, Zhang P, Zhao X, Wang Y. Redox-responsive hyaluronic acid nanogels for hyperthermia- assisted chemotherapy to overcome multidrug resistance. Carbohydr Polym 2018; 203:378-385. [PMID: 30318226 DOI: 10.1016/j.carbpol.2018.09.076] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
Although chemotherapy has been widely used in the treatment of many kinds of cancer, drug resistance and side effects are the main obstacles in the cancer chemotherapy that result in an inferior therapeutic outcome. For the design of drug delivery system, extracellular stability and intracellular effective release are also a pair of contradictions. In this research, gold nanorods (AuNRs) loaded hyaluronic acid (HA) nanogels with reduction sensitivity were prepared for the efficient intracellular delivery of doxorubicin (DOX). The aforementioned HA-CysNG@AuNR nanogels with cystamine (Cys) as crosslinker could remain stable in the physiological condition and release DOX rapidly in the mimic intracellular glutathione (GSH) condition. Meanwhile, the cellular uptake efficiency by the human breast carcinoma (MCF-7) cells was enhanced because of the highly expressed HA receptor (CD44) on the cytomembrane. However, further cell experiments verified that it was difficult to achieve desired results for drug-resistant human breast cancer (MCF-7 ADR) cells due to the reduced drug uptake and enhanced drug efflux. Interestingly, this multidrug resistance of MCF-7 ADR cells could be reversed after treated with near-infrared (NIR) light. This might ascribe to the hyperthermia generated by AuNRs under NIR, which suspended drug efflux process and led to excellent hyperthermia-assisted chemotherapy outcome. Overall, our studies suggested that AuNRs loaded reduction-sensitive HA nanogels were excellent candidates of drug carriers to reverse the drug-resistance and induce severe apoptosis of drug-resistant MCF-7 ADR cells.
Collapse
Affiliation(s)
- Bangbang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Qinan Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xinfang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiao Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
7
|
Bolu BS, Sanyal R, Sanyal A. Drug Delivery Systems from Self-Assembly of Dendron-Polymer Conjugates †. Molecules 2018; 23:E1570. [PMID: 29958437 PMCID: PMC6099537 DOI: 10.3390/molecules23071570] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
This review highlights the utilization of dendron-polymer conjugates as building blocks for the fabrication of nanosized drug delivery vehicles. The examples given provide an overview of the evolution of these delivery platforms, from simple micellar containers to smart stimuli- responsive drug delivery systems through their design at the macromolecular level. Variations in chemical composition and connectivity of the dendritic and polymeric segments provide a variety of self-assembled micellar nanostructures that embody desirable attributes of viable drug delivery systems.
Collapse
Affiliation(s)
- Burcu Sumer Bolu
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, 34342 Istanbul, Turkey.
- Center for Life Sciences and Technologies, Bogazici University, 34342 Istanbul, Turkey.
| |
Collapse
|
8
|
Yan R, Wang Z, Du Z, Wang H, Cheng X, Xiong J. A biomimetic fluorescent chemosensor for highly sensitive zinc(ii) detection and its application for cell imaging. RSC Adv 2018; 8:33361-33367. [PMID: 35548108 PMCID: PMC9086477 DOI: 10.1039/c8ra06501b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023] Open
Abstract
To fabricate a novel biomimetic fluorescent chemosensor, PSaAEMA-co-PMPC was synthesized via atom transfer radical polymerization, and this copolymer could be used for the detection of zinc(ii) and cell imaging. A series tests with various metal ions verified the specific fluorescence response behavior. This novel biomimetic fluorescent chemosensor exhibits excellent selectivity for Zn2+ ions over a wide range of tested metal ions in an aqueous solution. Moreover, cytotoxicity and bio-imaging tests were conducted to study the potential bio-application of the chemosensor. Owing to the biomimetic portion (phosphorylcholine), this copolymer possesses outstanding biocompatibility and could clearly image cells. The results indicated that PSaAEMA-co-PMPC has great potential for application in zinc(ii) detection and cell imaging. To fabricate a novel biomimetic fluorescent chemosensor, PSaAEMA-co-PMPC was synthesized via atom transfer radical polymerization, and this copolymer could be used for the detection of zinc(ii) and cell imaging.![]()
Collapse
Affiliation(s)
- Rui Yan
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Zhi Wang
- State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- China
| | - Zongliang Du
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Haibo Wang
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Xu Cheng
- Textile Institute
- College of Light Industry
- Textile and Food Engineering
- Sichuan University
- Chengdu
| | - Junjie Xiong
- Department of Pancreatic Surgery
- West China Hospital
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
9
|
Dib N, Reviglio AL, Fernández L, Morales G, Santo M, Otero L, Alustiza F, Liaudat AC, Bosch P, Calderón M, Martinelli M, Strumia M. Formation and characterization of Langmuir and Langmuir-Blodgett films of Newkome-type dendrons in presence and absence of a therapeutic compound, for the development of surface mediated drug delivery systems. J Colloid Interface Sci 2017; 496:243-253. [PMID: 28235718 DOI: 10.1016/j.jcis.2017.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022]
Abstract
Organic macromolecules with dendrimeric architectures are polymeric materials potentially useful as nanocarriers for therapeutic drugs. In this work, we evaluate a series of Newkome-type dendrons in Langmuir and Langmuir-Blodgett films as platforms capable of interacting with a potential antitumoral agent. The nanocomposite is proposed as model for the development of surface mediated drug delivery systems. We were successful in the formation and characterization of pure (dendrons) and composite (drug-dendron) stable and reproducible monolayers, and their transfer to solid substrates. A detailed study of topographic characteristics of the generated surfaces by atomic force microscopy was conducted. Furthermore, we probed dendron monolayer films as anchorage surfaces for mammalian cells. Normal cell attachment and proliferation on the surfaces were observed. No evident cytotoxic effects were detected, demonstrating the adequate biocompatibility of the surfaces.
Collapse
Affiliation(s)
- Nahir Dib
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Ana Lucia Reviglio
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Luciana Fernández
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Gustavo Morales
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Marisa Santo
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Luis Otero
- Departamento de Física, Departamento de Química, Universidad Nacional de Río Cuarto, CONICET, Agencia Postal 3, X5804BYA Río Cuarto, Argentina.
| | - Fabrisio Alustiza
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Ana Cecilia Liaudat
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Pablo Bosch
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal 3, X5804BYA Río Cuarto, Argentina
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Marisa Martinelli
- IPQA-CONICET, Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Cs. II, Ciudad Universitaria, Córdoba 5000, Argentina
| | - Miriam Strumia
- IPQA-CONICET, Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Cs. II, Ciudad Universitaria, Córdoba 5000, Argentina
| |
Collapse
|