1
|
Inagaki S, Yamamoto T, Higashihara T. Direct Synthesis of Chain-end-functionalized Poly(3-hexylthiophene) without Protecting Groups Using a Zincate Complex. Macromol Rapid Commun 2020; 41:e2000148. [PMID: 32364289 DOI: 10.1002/marc.202000148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 11/09/2022]
Abstract
Chain-end-functionalized poly(3-hexylthiophene)s (P3HTs) with benzyl alcohol (─PhCH2 OH), phenol (─PhOH), and benzoic acid (─PhCOOH) groups are directly synthesized based on the Negishi catalyst-transfer polycondensation method utilizing the zincate complex of t Bu4 ZnLi2 . In this system, neither protection nor deprotection steps are required, and also providing a living polymerization system to control the molecular weight while maintaining a low molar mass dispersity (ÐM ) of the obtained P3HT derivatives. Indeed, the chain-end-functionalized P3HTs can be synthesized along with controlled number-average molecular weights (Mn = 5100-20 000), low ÐM (1.06-1.14), and high chain-end functionality (Fn = 46-86%). The Fn values for the alcohol and phenol groups are found to be high (86% for ─PhCH2 OH and 71% for ─PhOH based on 1 H NMR, respectively), as also confirmed by matrix-assisted laser desorption/ionization time of flight mass spectroscopy. The easily synthesizable chain-end-functionalized P3HTs will be applicable for the facile synthesis of block and branched polymers containing P3HT as well as its related semiconducting polymer segments.
Collapse
Affiliation(s)
- Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, 992-8510, Japan
| | - Takuya Yamamoto
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16, Jonan, 992-8510, Japan
| |
Collapse
|
2
|
Hirao A, Matsuo Y, Goseki R. Synthesis of novel block polymers with unusual block sequences by methodology combining living anionic polymerization and designed linking chemistry. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1941-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
3
|
Goseki R, Tanaka S, Ishizone T, Hirao A. Living anionic polymerization of 1,4-divinylbenzene and its derivatives. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Huang W, Ma H, Han L, Liu P, Yang L, Shen H, Hao X, Li Y. Synchronous Regulation of Periodicity and Monomer Sequence during Living Anionic Copolymerization of Styrene and Dimethyl-[4-(1-phenylvinyl)phenyl]silane (DPE-SiH). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00666] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wei Huang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Pibo Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinyu Hao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
5
|
Goseki R, Ito S, Matsuo Y, Higashihara T, Hirao A. Precise Synthesis of Macromolecular Architectures by Novel Iterative Methodology Combining Living Anionic Polymerization with Specially Designed Linking Chemistry. Polymers (Basel) 2017; 9:E470. [PMID: 30965773 PMCID: PMC6418567 DOI: 10.3390/polym9100470] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 11/16/2022] Open
Abstract
This article reviews the development of a novel all-around iterative methodology combining living anionic polymerization with specially designed linking chemistry for macromolecular architecture syntheses. The methodology is designed in such a way that the same reaction site is always regenerated after the polymer chain is introduced in each reaction sequence, and this "polymer chain introduction and regeneration of the same reaction site" sequence is repeatable. Accordingly, the polymer chain can be successively and, in principle, limitlessly introduced to construct macromolecular architectures. With this iterative methodology, a variety of synthetically difficult macromolecular architectures, i.e., multicomponent μ-star polymers, high generation dendrimer-like hyperbranched polymers, exactly defined graft polymers, and multiblock polymers having more than three blocks, were successfully synthesized.
Collapse
Affiliation(s)
- Raita Goseki
- Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan.
- Department of Chemical Science and Engineering, School of Materials Chemistry and Technology, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Shotaro Ito
- Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yuri Matsuo
- Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Tomoya Higashihara
- Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Akira Hirao
- Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan.
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|