1
|
Alberg I, Kramer S, Leps C, Tenzer S, Zentel R. Effect of Core-Crosslinking on Protein Corona Formation on Polymeric Micelles. Macromol Biosci 2021; 21:e2000414. [PMID: 33543588 DOI: 10.1002/mabi.202000414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/17/2021] [Indexed: 01/14/2023]
Abstract
Most nanomaterials acquire a protein corona upon contact with biological fluids. The magnitude of this effect is strongly dependent both on surface and structure of the nanoparticle. To define the contribution of the internal nanoparticle structure, protein corona formation of block copolymer micelles with poly(N-2-hydroxypropylmethacrylamide) (pHPMA) as hydrophilic shell, which are crosslinked-or not-in the hydrophobic core is comparatively analyzed. Both types of micelles are incubated with human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Their size is determined by dynamic light scattering and proteins within the micellar fraction are characterized by gel electrophoresis and quantified by liquid chromatography-high-resolution mass spectrometry-based label-free quantitative proteomics. The analyses reveal only very low amounts of plasma proteins associated with the micelles. Notably, no significant enrichment of plasma proteins is detectable for core-crosslinked micelles, while noncrosslinked micelles show a significant enrichment of plasma proteins, indicative of protein corona formation. The results indicate that preventing the reorganization of micelles (equilibrium with unimers) by core-crosslinking is crucial to reduce the interaction with plasma proteins.
Collapse
Affiliation(s)
- Irina Alberg
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| | - Stefan Kramer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| | - Christian Leps
- Institute for Immunology, University Medical Center of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099, Mainz, Germany
| |
Collapse
|
3
|
Alberg I, Kramer S, Schinnerer M, Hu Q, Seidl C, Leps C, Drude N, Möckel D, Rijcken C, Lammers T, Diken M, Maskos M, Morsbach S, Landfester K, Tenzer S, Barz M, Zentel R. Polymeric Nanoparticles with Neglectable Protein Corona. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907574. [PMID: 32250017 DOI: 10.1002/smll.201907574] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 05/14/2023]
Abstract
The current understanding of nanoparticle-protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.
Collapse
Affiliation(s)
- Irina Alberg
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Stefan Kramer
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Meike Schinnerer
- Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Qizhi Hu
- Cristal Therapeutics, Oxfordlaan 55, Maastricht, 6229 EV, The Netherlands
| | - Christine Seidl
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Christian Leps
- Institute for Immunology, University Medical Center of Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, Aachen, 52074, Germany
| | - Diana Möckel
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, Aachen, 52074, Germany
| | - Cristianne Rijcken
- Cristal Therapeutics, Oxfordlaan 55, Maastricht, 6229 EV, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Forckenbecktrasse 55, Aachen, 52074, Germany
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of Johannes Gutenberg University gGmbH, Freiligrathstr. 12, Mainz, 55131, Germany
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, Mainz, 55129, Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of Mainz, Langenbeckstr. 1, Mainz, 55131, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz, D-55128, Germany
| |
Collapse
|
4
|
Kramer S, Svatunek D, Alberg I, Gräfen B, Schmitt S, Braun L, van Onzen AHAM, Rossin R, Koynov K, Mikula H, Zentel R. HPMA-Based Nanoparticles for Fast, Bioorthogonal iEDDA Ligation. Biomacromolecules 2019; 20:3786-3797. [PMID: 31535846 PMCID: PMC6794642 DOI: 10.1021/acs.biomac.9b00868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Fast
and bioorthogonally reacting nanoparticles are attractive
tools for biomedical applications such as tumor pretargeting. In this
study, we designed an amphiphilic block copolymer system based on
HPMA using different strategies to introduce the highly reactive click
units 1,2,4,5-tetrazines (Tz) either at the chain end (Tz-CTA) or
statistical into the hydrophobic block. This reactive group undergoes
a rapid, bioorthogonal inverse electron-demand Diels–Alder
reaction (iEDDA) with trans-cyclooctenes (TCO). Subsequently,
this polymer platform was used for the preparation of different Tz-covered
nanoparticles, such as micelles and colloids. Thereby it was found
that the reactivity of the polymeric micelles is comparable to that
of the low molar mass tetrazines. The core-cross-linked micelles can
be successfully conjugated at rather low concentrations to large biomacromolecules
like antibodies, not only in physiological buffer, but also in human
blood plasma, which was confirmed by fluorescence correlation spectroscopy
(FCS).
Collapse
Affiliation(s)
- Stefan Kramer
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Dennis Svatunek
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Irina Alberg
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Barbara Gräfen
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Lydia Braun
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Arthur H A M van Onzen
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Raffaella Rossin
- Tagworks Pharmaceuticals BV, Radboud University Medical Center , Department of Nuclear Medicine and Radiology , 6500 HB Nijmegen , The Netherlands
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research , Physics of Interfaces , Ackermannweg 10 , 55128 Mainz , Germany
| | - Hannes Mikula
- TU Wien , Institute of Applied Synthetic Chemistry , Getreidemarkt 9 , 1060 Vienna , Austria
| | - Rudolf Zentel
- Johannes Gutenberg University Mainz , Institute of Organic Chemistry , Duesbergweg 10-14 , 55128 Mainz , Germany
| |
Collapse
|
5
|
Kramer S, Langhanki J, Krumb M, Opatz T, Bros M, Zentel R. HPMA‐Based Nanocarriers for Effective Immune System Stimulation. Macromol Biosci 2019; 19:e1800481. [DOI: 10.1002/mabi.201800481] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Stefan Kramer
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Jens Langhanki
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Matthias Krumb
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Till Opatz
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| | - Matthias Bros
- Department of DermatologyUniversity Medical CenterJohannes Gutenberg‐University Mainz Obere Zahlbacher Straße 63 ,55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic ChemistryJohannes Gutenberg‐University Mainz Duesbergweg 10–14 ,55128 Mainz Germany
| |
Collapse
|