1
|
Chen Q, Jiang Y, Yuan L, Liu L, Zhu X, Chen R, Wang Z, Wu K, Luo H, Ouyang Q. Preparation, Characterization, and Antioxidant Properties of Self-Assembled Nanomicelles of Curcumin-Loaded Amphiphilic Modified Chitosan. Molecules 2024; 29:2693. [PMID: 38893567 PMCID: PMC11173681 DOI: 10.3390/molecules29112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Curcumin (Cur) is a phytochemical with various beneficial properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its hydrophobicity, poor bioavailability, and stability limit its application in many biological approaches. In this study, a novel amphiphilic chitosan wall material was synthesized. The process was carried out via grafting chitosan with succinic anhydride (SA) as a hydrophilic group and deoxycholic acid (DA) as a hydrophobic group; 1H-NMR, FTIR, and XRD were employed to characterize the amphiphilic chitosan (CS-SA-DA). Using a low-cost, inorganic solvent-based procedure, CS-SA-DA was self-assembled to load Cur nanomicelles. This amphiphilic polymer formed self-assembled micelles with a core-shell structure and a critical micelle concentration (CMC) of 0.093 mg·mL-1. Cur-loaded nanomicelles were prepared by self-assembly and characterized by the Nano Particle Size Potential Analyzer and transmission electron microscopy (TEM). The mean particle size of the spherical Cur-loaded micelles was 770 nm. The drug entrapment efficiency and loading capacities were up to 80.80 ± 0.99% and 19.02 ± 0.46%, respectively. The in vitro release profiles of curcumin from micelles showed a constant release of the active drug molecule. Cytotoxicity studies and toxicity tests for zebrafish exhibited the comparable efficacy and safety of this delivery system. Moreover, the results showed that the entrapment of curcumin in micelles improves its stability, antioxidant, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Qizhou Chen
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Yuwei Jiang
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Linlan Yuan
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Lifen Liu
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Xufeng Zhu
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Rimeng Chen
- Zhanjiang Institute for Drug Control, Zhanjiang 524023, China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Hui Luo
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Qianqian Ouyang
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524023, China
| |
Collapse
|
2
|
Liu F, Liu X. Amphiphilic Dendronized Copolymer-Encapsulated Au, Ag and Pd Nanoparticles for Catalysis in the 4-Nitrophenol Reduction and Suzuki-Miyaura Reactions. Polymers (Basel) 2024; 16:1080. [PMID: 38674999 PMCID: PMC11054709 DOI: 10.3390/polym16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The branched structures of dendronized polymers can provide good steric stabilization for metal nanoparticle catalysts. In this work, an amphiphilic dendronized copolymer containing hydrophilic branched triethylene glycol moieties and hydrophobic branched ferrocenyl moieties is designed and prepared by one-pot ring-opening metathesis polymerization, and is used as the stabilizer for metal (Au, Ag and Pd) nanoparticles. These metal nanoparticles (Au nanoparticles: 3.5 ± 3.0 nm; Ag nanoparticles: 7.2 ± 4.0 nm; Pd nanoparticles: 2.5 ± 1.0 nm) are found to be highly active in both the 4-nitrophenol reduction and Suzuki-Miyaura reactions. In the 4-nitrophenol reduction, Pd nanoparticles have the highest catalytic ability (TOF: 2060 h-1). In addition, Pd nanoparticles are also an efficient catalyst for Suzuki-Miyaura reactions (TOF: 1980 h-1) and possess good applicability for diverse substrates. The amphiphilic dendronized copolymer will open a new door for the development of efficient metal nanoparticle catalysts.
Collapse
Affiliation(s)
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China;
| |
Collapse
|
3
|
Blosch SE, Scannelli SJ, Alaboalirat M, Matson JB. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sarah E. Blosch
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Samantha J. Scannelli
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Mohammed Alaboalirat
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Hiba K, Shaibuna M, Prathapan S, Sreekumar K. Novel Carboxylic Acid Functionalized Dendronized Polymer: A Homogeneous, Reusable Metal Free Acid Catalyst for the Synthesis of Symmetric and Unsymmetric Xanthene Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kottayil Hiba
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| | - Machingal Shaibuna
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| | - Sreedharan Prathapan
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| | - Krishnapillai Sreekumar
- Department of Applied Chemistry Cochin University of Science and Technology Kochi 682022 India
| |
Collapse
|
5
|
Barther D, Moatsou D. Ring-Opening Metathesis Polymerization of Norbornene-Based Monomers Obtained via the Passerini Three Component Reaction. Macromol Rapid Commun 2021; 42:e2100027. [PMID: 33644929 DOI: 10.1002/marc.202100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Indexed: 11/12/2022]
Abstract
Ring-opening metathesis polymerization is a robust method to synthesize a variety of polymers by using ring-strained molecules as monomers, e.g., norbornenes. However, the synthesis of monomers with multiple functional groups remains a challenge, albeit peptide functional norbornenes have previously been used. Here, the Passerini three component reaction is exploited to synthesize norbornenes with two variable functional groups varying in bulkiness and distance from the polymerizable alkene. The results indicate that the functional groups do not affect the kinetics of the polymerization, whereas the length of the linker has a minor effect. Furthermore, a diblock-type copolymer is synthesized in a one-pot fashion, also indicating good control of the polymerization process. The thermal properties of all polymers are evaluated, highlighting the effect of monomer composition. This synthetic approach can be transferred to a variety of compounds, thus promising highly diverse polymers with complex compositions and architectures.
Collapse
Affiliation(s)
- Dennis Barther
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| | - Dafni Moatsou
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, Karlsruhe, 76131, Germany
| |
Collapse
|
6
|
Na Y, Woo J, Choi WI, Sung D. Novel carboxylated ferrocene polymer nanocapsule with high reactive oxygen species sensitivity and on-demand drug release for effective cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111566. [PMID: 33485085 DOI: 10.1016/j.colsurfb.2021.111566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/18/2022]
Abstract
Multidrug resistance (MDR) is a major clinical issue leading to substantial reductions in the intracellular levels of anticancer drugs. To overcome MDR, stimulus-responsive polymeric nanotherapeutics that facilitate drug release and cellular uptake at target sites have emerged as promising tools for safe and effective cancer treatment. Among these nanotherapeutics, reactive oxygen species (ROS)-responsive nanocapsules are ideal carriers, as abnormally increased ROS levels can drive controlled drug release at target sites. In this study, we developed novel, high ROS-responsive carboxylated ferrocene nanocapsules (CFNCs) using solvents of different polarities for effective multidrug-resistant cancer therapy. The CFNCs were prepared via the self-assembly of an amphiphilic carboxylated ferrocene polymer composed of a hydrophilic COOH segment and a hydrophobic ferrocenylmethyl methacrylate segment possessing a ROS-responsive group. The size and ROS sensitivity of self-assembled CFNCs could be controlled by using solvents of different polarities during the simple nanoprecipitation process. The CFNCs showed a high loading content (approximately 30 wt%) and on-demand release of paclitaxel under both normal and tumor-mimicking conditions, and exhibited synergistic anticancer effects in multidrug-resistant colorectal cancer cells (HCT-15). Our findings suggest that CFNCs can be applied as carriers for effective cancer therapy.
Collapse
Affiliation(s)
- Yoonhee Na
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea; School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiseob Woo
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea; School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
7
|
|
8
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Astruc D. The supramolecular redox functions of metallomacromolecules. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2020. [DOI: 10.1186/s42825-020-00026-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Metallomacromolecules are frequently encountered in redox proteins including metal-tanned hide collagen and play crucial roles involving supramolecular properties in biological electron-transfer processes. They are also currently found in non-natural families, such as: metallopolymers, metallodendrimers and metallodendronic polymers. This mini-review discusses the supramolecular redox functions of such nanomaterials developed in our research group. Electron-transfer processes are first examined in mono-, bis- and hexa-nuclear ferrocenes and other electron-reservoir organoiron systems showing the influence of supramolecular and reorganization aspects on their mechanism. Then applications of electron-transfer processes using these same organoiron redox systems in metallomacromolecules and their supramolecular functions are discussed including redox recognition/sensing, catalysis templates, electrocatalysis, redox catalysis, molecular machines, electrochromes, drug delivery device and nanobatteries.
Graphical Abstract
Collapse
|
10
|
Liu X, Liu F, Liu W, Gu H. ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1723022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Fangfei Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Birchall LT, Shehata S, McCarthy S, Shepherd HJ, Clark ER, Serpell CJ, Biagini SCG. Supramolecular behaviour and fluorescence of rhodamine-functionalised ROMP polymers. Polym Chem 2020. [DOI: 10.1039/d0py00799d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A ROMP platform leading to rhodamine B containing amphiphilic block copolymers, which self-assemble into micelles which are able to sequester molecular dyes and interact with them by energy transfer. The polymer micelles do not interact with DNA.
Collapse
Affiliation(s)
- Lee T. Birchall
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Sara Shehata
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Sean McCarthy
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Helena J. Shepherd
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Ewan R. Clark
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Christopher J. Serpell
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| | - Stefano C. G. Biagini
- Supramolecular
- Interfacial
- and Synthetic Chemistry Group
- School of Physical Sciences
- Ingram Building
| |
Collapse
|
12
|
|
13
|
pH-responsive ultrasonic self-assembly spinosad-loaded nanomicelles and their antifungal activity to Fusarium oxysporum. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Liu X, Liu F, Astruc D, Lin W, Gu H. Highly-branched amphiphilic organometallic dendronized diblock copolymer: ROMP synthesis, self-assembly and long-term Au and Ag nanoparticle stabilizer for high-efficiency catalysis. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Supramolecular redox-responsive substrate carrier activity of a ferrocenyl Janus device. J Inorg Biochem 2019; 193:31-41. [DOI: 10.1016/j.jinorgbio.2018.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/28/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022]
|
17
|
Mu S, Liu W, Ling Q, Liu X, Gu H. Ferrocenyl amphiphilic Janus dendrimers as redox‐responsive micellar carriers. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shengdong Mu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| |
Collapse
|
18
|
Qiu G, Liu X, Wang B, Gu H, Wang W. Ferrocene-containing amphiphilic polynorbornenes as biocompatible drug carriers. Polym Chem 2019. [DOI: 10.1039/c9py00332k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrocene-containing diblock and random polynorbornene-based copolymers were synthesized by ROMP and used as biocompatible drug carrier micelles.
Collapse
Affiliation(s)
- Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Binrong Wang
- College of Food and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Weixiang Wang
- College of Food and Bioengineering
- Xihua University
- Chengdu 610039
- China
| |
Collapse
|