1
|
Wu K, Wei Z, Liu R, Sun G, Luo J. Versatile Fabrication of Polymer Microcapsules with Controlled Shell Composition and Tunable Performance via Photopolymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:7371-7379. [PMID: 37191663 DOI: 10.1021/acs.langmuir.3c00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In this work, a series of polymer microcapsules based on UV-curable prepolymers are prepared by combining an emulsion template and photopolymerization. The modulation of the shell structure is achieved by employing UV-curable prepolymers with different chemical structures (polyurethane acrylates, polyester acrylates, and epoxy acrylates) and functionalities (di-, tetra-, and hex-). The relationships between the shell structure and the microcapsule properties are investigated in detail. The results show that the properties of the microcapsules can be effectively regulated by adjusting the composition and cross-linking density of the shell. Epoxy acrylate-based microcapsules exhibit higher impermeability, solvent resistance, and barrier and mechanical properties than polyurethane acrylate and polyester acrylate-based microcapsules. Using UV-curable prepolymer with high functionality as a shell-forming material could effectively improve the impermeability, solvent resistance, and barrier and mechanical properties of microcapsules. In addition, the dispersion of microcapsules in the coating matrix tends to follow the "similar component, better compatibility" principle, i.e., a uniform dispersion of the microcapsule in the coating matrix is more easily achieved when the compositions of the microcapsule shell and coating are similar in structure. The convenient adjustment of the shell structure and the investigation of the "structure-property" relationship provide guidance for the further controlled design of microcapsules.
Collapse
Affiliation(s)
- Kaiyun Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ziyue Wei
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Guanqing Sun
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
2
|
Tercki D, Orlińska B, Słotwińska D, Sajdak M. Pickering emulsions as an alternative to traditional polymers: trends and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Pickering emulsions have gained increasing interest because of their unique features, including easy preparation and stability. In contrast to classical emulsions, in Pickering emulsions, the stabilisers are solid micro/nanoparticles that accumulate on the surfaces of liquid phases. In addition to their stability, Pickering emulsions are less toxic and responsive to external stimuli, which make them versatile material that can be flexibly designed for specific applications, e.g., catalysis, pharmaceuticals and new materials. The potential toxicity and adverse impact on the environment of classic emulsions is related to the extractable nature of the water emulsifier. The impacts of some emulsifiers are related to not only their chemical natures but also their stabilities; after base or acid hydrolysis, some emulsifiers can be turned into sulphates and fatty alcohols, which are dangerous to aquatic life. In this paper, recent research on Pickering emulsion preparations is reviewed, with a focus on styrene as one of the main emulsion components. Moreover, the effects of the particle type and morphology and the critical parameters of the emulsion production process on emulsion properties and applications are discussed. Furthermore, the current and prospective applications of Pickering emulsion, such as in lithium-ion batteries and new vaccines, are presented.
Collapse
Affiliation(s)
- Dariusz Tercki
- Department of Organic Chemical Technology and Petrochemistry , PhD School, Silesian University of Technology , Akademicka 2a, 44-100 Gliwice , Poland
- Synthos S.A. , ul. Chemików 1, 32-600 Oświęcim , Poland
| | - Beata Orlińska
- Department of Organic Chemical Technology and Petrochemistry , Silesian University of Technology , B. Krzywoustego 4, 44-100 Gliwice , Poland
| | | | - Marcin Sajdak
- Department of Air Protection, Silesian University of Technology , S. Konarskiego 22B, 44-100 Gliwice , Poland
- School of Chemical Engineering, University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| |
Collapse
|
3
|
Sun X, Han J, Guo R. A Mini Review on Yolk-Shell Structured Nanocatalysts. Front Chem 2020; 8:606044. [PMID: 33330401 PMCID: PMC7734176 DOI: 10.3389/fchem.2020.606044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
Yolk-shell structured nanomaterials, possessing a hollow shell and interior core, are emerging as unique nanomaterials with applications ranging from material science, biology, and chemistry. In particular, the scaffold yolk-shell structure shows great promise as a nanocatalyst. Specifically, the hollow shell offers a confined space, which keeps the active yolk from aggregation and deactivation. The inner void ensures the pathway for mass transfer. Over the last few decades, many strategies have been developed to endow yolk-shell based nanomaterials with superior catalytic performance. This minireview describes synthetic methods for the preparation of various yolk-shell nanomaterials. It discusses strategies to improve the performance of yolk-shell catalysts with examples for engineering the shell, yolk, void, and related synergistic effects. Finally, it considers the challenges and prospects for yolk-shell nanocatalysts.
Collapse
Affiliation(s)
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | | |
Collapse
|
4
|
Wang Y, Cheng Q, Liu J, Tariq Z, Zheng Z, Li G, Kaplan DL, Wang X. Tuning Microcapsule Shell Thickness and Structure with Silk Fibroin and Nanoparticles for Sustained Release. ACS Biomater Sci Eng 2020; 6:4583-4594. [PMID: 33455196 DOI: 10.1021/acsbiomaterials.0c00835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcapsules have attracted widespread interest for their unique properties in encapsulation, protection, and separation of active ingredients from the surrounding environment. However, microcapsule carriers with controllable shell thickness, permeability, good mechanical properties, and thermostability are challenging to obtain. Herein, robust and versatile composite microcapsules were fabricated using SiO2 nanoparticle-stabilized (Pickering) oil emulsions as core templates, while silk fibroin (SF) was assembled at the oil/water interface. This process resulted in the formation of physically and chemically stable microcapsules with a thick (∼800 nm) shell that protected the encapsulated ingredient from high shear forces and high temperatures during spray-drying. SiO2 nanoparticles were randomly distributed in the shell matrix after preparation, making the microcapsules mechanically robust (4.48 times higher than control samples prepared using surfactant Tween 80 instead of the SiO2 nanoparticles), as well as thermostable (retained shape to 900 °C). The microcapsules displayed tunable drug release by adjusting the SF content in the shell. Under optimal conditions (weight ratio of SiO2/SF = 7:10, corn oil content about 55 wt %), a model drug (curcumin) was encapsulated in the SF microcapsules with an encapsulation efficiency up to 95%. The in vitro drug release from these SF microcapsules lasted longer than control microcapsules, demonstrating the capability of these novel microcapsules in sustaining drug release.
Collapse
Affiliation(s)
- Yongfeng Wang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Qingqing Cheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Zeeshan Tariq
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
5
|
Kubiak T, Banaszak J, Józefczak A, Rozynek Z. Direction-Specific Release from Capsules with Homogeneous or Janus Shells Using an Ultrasound Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15810-15822. [PMID: 32186360 DOI: 10.1021/acsami.9b21484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of approaches have been developed to release contents from capsules, including techniques that use electric or magnetic fields, light, or ultrasound as a stimulus. However, in the majority of the known approaches, capsules are disintegrated in violent way and the liberation of the encapsulated material is often in a random direction. Thus, the controllable and direction-specific release from microcapsules in a simple and effective way is still a great challenge. This greatly limits the use of microcapsules in applications where targeted and directional release is desirable. Here, we present a convenient ultrasonic method for controllable and unidirectional release of an encapsulated substance. The release is achieved by using MHz-frequency ultrasound that enables the inner liquid stretching, which imposes mechanical stress on the capsule's shell. This leads to the puncturing of the shell and enables smooth liberation of the liquid payload in one direction. We demonstrate that 1-4.3 MHz acoustic waves with the intensity of a few W/cm2 are capable of puncturing of particle capsules with diameters ranging from around 300 μm to 5 mm and the release of the encapsulated liquid in a controlled manner. Various aspects of our route, including the role of the capsule size, ultrasound wavelength, and intensity in the performance of the method, are studied in detail. We also show that the additional control of the release can be achieved by using capsules having patchy shells. The presented method can be used to facilitate chemical reactions in micro- and nanolitre droplets and various small-scale laboratory operations carried in bulk liquids in microenvironment. Our results may also serve as an entry point for testing other uses of the method and formulation of theoretical modeling of the presented ultrasound mechanism.
Collapse
Affiliation(s)
- Tomasz Kubiak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Hipolit Cegielski State University of Applied Sciences, Stefana Wyszyńskiego 38, 62-200 Gniezno, Poland
| | - Joanna Banaszak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Arkadiusz Józefczak
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Zbigniew Rozynek
- Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
6
|
|