1
|
Mrázek J, Sita J, Ondreáš F, Zubov A, Chmelař J. Homogeneous films from amphiphilic hyaluronan and their characterization by confocal microscopy and nanoindentation. Carbohydr Polym 2024; 340:122331. [PMID: 38858014 DOI: 10.1016/j.carbpol.2024.122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Self-supporting films from amphiphilic hyaluronan are suitable for medical applications like wound dressings or resorbable implants. These films are typically cast from water/alcohol solutions. However, when the mixed solvent evaporates in ambient air, convection flows develop in the solution and become imprinted in the film, potentially compromising its properties. Consequently, we developed a novel film manufacturing method: drying in a closed box under saturated vapour conditions. Using this approach, we prepared a series of optically clear lauroyl-hyaluronan (LHA) films with uniform thickness and compared them to their air-dried counterparts. We first evaluated swelling ratios and elastic moduli for LHA films with varying degrees of substitution. The box-dried films swelled significantly less and were 1-2 orders of magnitude stiffer than air-dried films from the same LHA sample. Confocal microscopy revealed that box-dried films exhibited a regular microstructure, while air-dried films displayed a pore-size gradient and strong microstructure modulation due to convection flows. Local elastic modulus variations arising from these microstructures were assessed using nanoindentation mapping. Importantly, achieving the desired film stiffness requires much lower polymer modification when box-drying is used, enhancing the biological response to the material. These findings have implications for all polysaccharide formulations that utilize mixed solvents.
Collapse
Affiliation(s)
- Jiří Mrázek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic.
| | - Jaroslav Sita
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Brno University of Technology, Central European Institute of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - František Ondreáš
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Brno University of Technology, Central European Institute of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
| | - Alexandr Zubov
- University of Chemistry and Technology, Department of Chemical Engineering, Technická 5, 166 28 Prague, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
2
|
Lehká K, Starigazdová J, Mrázek J, Nešporová K, Šimek M, Pavlík V, Chmelař J, Čepa M, Barrios-Llerena ME, Kocurková A, Kriváková E, Koukalová L, Kubala L, Velebný V. An in vitro model that mimics the foreign body response in the peritoneum: Study of the bioadhesive properties of HA-based materials. Carbohydr Polym 2023; 310:120701. [PMID: 36925239 DOI: 10.1016/j.carbpol.2023.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
A cascade of reactions known as the foreign body response (FBR) follows the implantation of biomaterials leading to the formation of a fibrotic capsule around the implant and subsequent health complications. The severity of the FBR is driven mostly by the physicochemical characteristics of implanted material, the method and place of implantation, and the degree of immune system activation. Here we present an in vitro model for assessing new materials with respect to their potential to induce a FBR in the peritoneum. The model is based on evaluating protein sorption and cell adhesion on the implanted material. We tested our model on the free-standing films prepared from hyaluronan derivatives with different hydrophobicity, swelling ratio, and rate of solubilization. The proteomic analysis of films incubated in the mouse peritoneum showed that the presence of fibrinogen was driving the cell adhesion. Neither the film surface hydrophobicity/hydrophilicity nor the quantity of adsorbed proteins were decisive for the induction of the long-term cell adhesion leading to the FBR, while the dissolution rate of the material proved to be a crucial factor. Our model thus helps determine the probability of a FBR to materials implanted in the peritoneum while limiting the need for in vivo animal testing.
Collapse
Affiliation(s)
- Kateřina Lehká
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jana Starigazdová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jiří Mrázek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Matěj Šimek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Martin Čepa
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Anna Kocurková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Eva Kriváková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Ludmila Koukalová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Lukáš Kubala
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
3
|
Mrázek J, Kohout J, Kmječ T, Nešporová K, Chmelař J, Kubala L, Velebný V. Insoluble hyaluronan films obtained by heterogeneous crosslinking with iron(III) as resorbable implants. Int J Biol Macromol 2021; 191:201-210. [PMID: 34543627 DOI: 10.1016/j.ijbiomac.2021.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
We present water-insoluble hyaluronan films crosslinked by trivalent iron developed as potential resorbable implants. The films were crosslinked by sorption of ferric salt into solid HA films in water/2-propanol bath. These heterogeneously crosslinked films (het-FeHA) remained tough and dimensionally stable when rehydrated in saline. In contrast, films prepared by drying the well-known homogeneous ferric hyaluronate gels (hom-FeHA) softened upon rehydration and expanded rapidly. Differences between hom-FeHA and het-FeHA result from polymer network topology (dominant inter- or intra-molecular crosslink, respectively). Moreover, Mössbauer spectroscopy of het-FeHA revealed diiron complexes, while iron in the hom-FeHA was present exclusively as γ-FeOOH nanoparticles or amorphous FeOOH. The biocompatibility tests of het-FeHA did not show any adverse effect and the sample disintegrated within one day when implanted in mice peritoneum. In conclusion, we developed implantable hyaluronan-based free-standing film with minimal swelling that can be resorbed quickly enough to avoid induction of foreign-body reaction.
Collapse
Affiliation(s)
- Jiří Mrázek
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czechia; Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, Prague, Czechia.
| | - Jaroslav Kohout
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechia
| | - Tomáš Kmječ
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 18000 Prague 8, Czechia
| | | | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 56102 Dolní Dobrouč, Czechia
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czechia; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czechia
| | | |
Collapse
|
4
|
Tönsmann M, Scharfer P, Schabel W. Critical Solutal Marangoni Number Correlation for Short-Scale Convective Instabilities in Drying Poly(vinyl acetate)-Methanol Thin Films. Polymers (Basel) 2021; 13:polym13172955. [PMID: 34502995 PMCID: PMC8433935 DOI: 10.3390/polym13172955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
A new empiric correlation for the critical solutal Marangoni number as function of the Péclet and Schmidt numbers is proposed. It is based on previously published experimental flow field data in drying poly(vinyl acetate)-methanol films with an initial thickness in the range of 20–100 μm and an initial solvent load of 1 to 2 gMeOH/gPVAc, as well as newly derived concentration profile measurements and 1D drying simulations. The analysis accounts for realistic transient material properties and describes the occurrence of short-scale convective Marangoni (in)stabilities during the entire drying process with an accuracy of 9%. In addition, the proposed correlation qualitatively follows trends known from theory. As convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, the correlation may facilitate future process design for either thin films with uniform thickness or deliberate self-assembly.
Collapse
|
5
|
Transient Three-Dimensional Flow Field Measurements by Means of 3D µPTV in Drying Poly(Vinyl Acetate)-Methanol Thin Films Subject to Short-Scale Marangoni Instabilities. Polymers (Basel) 2021; 13:polym13081223. [PMID: 33920103 PMCID: PMC8068913 DOI: 10.3390/polym13081223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Convective Marangoni instabilities in drying polymer films may induce surface deformations, which persist in the dry film, deteriorating product performance. While theoretic stability analyses are abundantly available, experimental data are scarce. We report transient three-dimensional flow field measurements in thin poly(vinyl acetate)-methanol films, drying under ambient conditions with several films exhibiting short-scale Marangoni convection cells. An initial assessment of the upper limit of thermal and solutal Marangoni numbers reveals that the solutal effect is likely to be the dominant cause for the observed instabilities.
Collapse
|
6
|
Chmelař J, Mrázek J, Hermannová M, Kubala L, Ambrožová G, Kocurková A, Drmota T, Nešporová K, Grusová L, Velebný V. Biodegradable free-standing films from lauroyl derivatives of hyaluronan. Carbohydr Polym 2019; 224:115162. [DOI: 10.1016/j.carbpol.2019.115162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|