1
|
Kusters GLA, Zhang G, Chen Z, Suo Z. Amphiphilic monomers bridge hydrophobic polymers and water. SOFT MATTER 2023. [PMID: 38031662 DOI: 10.1039/d3sm01129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Water dissolves a hydrophilic polymer, but not a hydrophobic polymer. Many monomers of hydrophilic polymers, however, are amphiphilic, with a hydrophobic vinyl group for radical polymerization, as well as a hydrophilic group. Consequently, such an amphiphilic monomer may form solutions with both water and hydrophobic polymers. Ternary mixtures of amphiphilic monomer, hydrophobic polymer, and water have recently been used as precursors for interpenetrating polymer networks of hydrophilic polymers and hydrophobic polymers of unusual properties. However, the phase behavior of the ternary mixtures of amphiphilic monomer, hydrophobic polymer, and water themselves has not been studied. Here we mix the amphiphilic monomer acrylic acid, the hydrophobic polymer poly(methyl methacrylate), and water. In the mixture, the hydrophobic polymer can form various morphologies, including solution, micelle, gel, and polymer glass. We interpret these findings by invoking that the hydrophobic and hydrophilic groups of the amphiphilic monomer enable it to function as a bridge. That is, the hydrophobic functional group binds with the hydrophobic polymer, and the hydrophilic functional group binds with water. This picture leads to a simple modification to the Flory-Huggins theory, which agrees well with our experimental data. Amphiphilic monomers offer a rich area for further study for scientific insight, as well as for expanding opportunities to develop materials of self-assembled structures with unusual properties.
Collapse
Affiliation(s)
- Guido L A Kusters
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA.
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5612AZ, The Netherlands
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA.
| | - Zheqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA 02138, USA.
| |
Collapse
|
2
|
Heidarian P, Kouzani AZ. A self-healing magneto-responsive nanocellulose ferrogel and flexible soft strain sensor. Int J Biol Macromol 2023; 234:123822. [PMID: 36822286 DOI: 10.1016/j.ijbiomac.2023.123822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
Crosslinks are the building blocks of hydrogels and play an important role in their overall properties. They may either be reversible and dynamic allowing for autonomous self-healing properties, or permanent and static resulting in robustness and mechanical strength. Hence, a combination of crosslinks is often required to engineer the 3D network of hydrogels with both autonomous self-healing and required robustness for strain sensing application; however, this complicates the fabrication of such hydrogels. The facile, yet versatile, approach used in this study is to forgo the use of extra crosslinks and instead rely solely on the properties of magnetic nanocellulose to fabricate a tough, stretchy, yet magneto-responsive, ionic conductive ferrogel for strain sensing. The ferrogel also gives stimuli-free and autonomous self-healing capacity, as well as the ability to monitor real-time strain under external magnetic actuation. The ferrogel also functions as a touch-screen pen. Based on our findings, this study has the potential to advance the rational design of multifunctional hydrogels, with applications in soft and flexible strain sensors, health monitoring and soft robotics.
Collapse
Affiliation(s)
- Pejman Heidarian
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
3
|
Heidarian P, Kouzani AZ. Starch-g-Acrylic Acid/Magnetic Nanochitin Self-Healing Ferrogels as Flexible Soft Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031138. [PMID: 36772177 PMCID: PMC9920654 DOI: 10.3390/s23031138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/01/2023]
Abstract
Mechanically robust ferrogels with high self-healing ability might change the design of soft materials used in strain sensing. Herein, a robust, stretchable, magneto-responsive, notch insensitive, ionic conductive nanochitin ferrogel was fabricated with both autonomous self-healing and needed resilience for strain sensing application without the need for additional irreversible static chemical crosslinks. For this purpose, ferric (III) chloride hexahydrate and ferrous (II) chloride as the iron source were initially co-precipitated to create magnetic nanochitin and the co-precipitation was confirmed by FTIR and microscopic images. After that, the ferrogels were fabricated by graft copolymerisation of acrylic acid-g-starch with a monomer/starch weight ratio of 1.5. Ammonium persulfate and magnetic nanochitin were employed as the initiator and crosslinking/nano-reinforcing agents, respectively. The ensuing magnetic nanochitin ferrogel provided not only the ability to measure strain in real-time under external magnetic actuation but also the ability to heal itself without any external stimulus. The ferrogel may also be used as a stylus for a touch-screen device. Based on our findings, our research has promising implications for the rational design of multifunctional hydrogels, which might be used in applications such as flexible and soft strain sensors, health monitoring, and soft robotics.
Collapse
|
4
|
Hydrogen bonding dissipating hydrogels: The influence of network structure design on structure–property relationships. J Colloid Interface Sci 2023; 630:638-653. [DOI: 10.1016/j.jcis.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
5
|
Hou Y, Xu H, Peng Y, Xiong H, Cai M, Wen Y, Wu Q, Wu J. Recyclable and self-healable elastomers with high mechanical performance enabled by hydrogen-bonded rigid structure. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Hu N, Wang Y, Ma R, Zhang W, Li B, Zhao X, Zhang L, Gao Y. Optimizing the fracture toughness of a dual cross-linked hydrogel via molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:17605-17614. [PMID: 35829708 DOI: 10.1039/d2cp02478k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a coarse-grained model is adopted to explore the fracture toughness of a dual cross-linked hydrogel which consists of a physically cross-linked network and a chemically cross-linked network. By calculating the fracture energy, the optimized fracture toughness of the hydrogel appears at the intermediate content of the chemical network. To understand it, the structure change of both the chemical network and the physical network is first characterized during the tensile process. For the chemical network, the fraction and rate of broken bonds gradually improve with increasing content of the chemical network while the strain range where the bond breakage occurs is reduced. For the physical network, the number of clusters and the interaction energy first increase and then decrease with increasing strain. This reflects the breakage and reformation of the physical network, which dissipates more energy and improves the fracture energy. Furthermore, by stress decomposition, the stress is mainly borne by the physical network at small strain and the chemical network at large strain, which proves their synergistic effect in enhancing the hydrogel. Then, the number of voids is calculated as a function of strain. It is found that the voids initiate in the weak region at small strain while in the position of the bond breakage at large strain. Moreover, the number of voids decreases with increasing content of the chemical network at small strain. Finally, the effect of the strength of the chemical network or the physical network on the fracture toughness is discussed. The optimized fracture toughness of hydrogel appears at the intermediate strength.
Collapse
Affiliation(s)
- Nan Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| | - Yimin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| | - Ruibin Ma
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| | - Wenfeng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| | - Yangyang Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 10029, People's Republic of China. .,Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, 10029, People's Republic of China.
| |
Collapse
|
7
|
Zainul Armir NA, Zulkifli A, Gunaseelan S, Palanivelu SD, Salleh KM, Che Othman MH, Zakaria S. Regenerated Cellulose Products for Agricultural and Their Potential: A Review. Polymers (Basel) 2021; 13:3586. [PMID: 34685346 PMCID: PMC8537589 DOI: 10.3390/polym13203586] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Cellulose is one of the most abundant natural polymers with excellent biocompatibility, non-toxicity, flexibility, and renewable source. Regenerated cellulose (RC) products result from the dissolution-regeneration process risen from solvent and anti-solvent reagents, respectively. The regeneration process changes the cellulose chain conformation from cellulose I to cellulose II, leads the structure to have more amorphous regions with improved crystallinity, and inclines towards extensive modification on the RC products such as hydrogel, aerogel, cryogel, xerogel, fibers, membrane, and thin film. Recently, RC products are accentuated to be used in the agriculture field to develop future sustainable agriculture as alternatives to conventional agriculture systems. However, different solvent types and production techniques have great influences on the end properties of RC products. Besides, the fabrication of RC products from solely RC lacks excellent mechanical characteristics. Thus, the flexibility of RC has allowed it to be homogenously blended with other materials to enhance the final products' properties. This review will summarize the properties and preparation of potential RC-based products that reflect its application to replace soil the plantation medium, govern the release of the fertilizer, provide protection on crops and act as biosensors.
Collapse
Affiliation(s)
- Nur Amira Zainul Armir
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Amalia Zulkifli
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Shamini Gunaseelan
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Swarna Devi Palanivelu
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Kushairi Mohd Salleh
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| | - Muhamad Hafiz Che Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Sarani Zakaria
- Bioresources and Biorefinery Laboratory, Department of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.A.Z.A.); (A.Z.); (S.G.); (S.D.P.)
| |
Collapse
|
8
|
Panja S, Dietrich B, Trabold A, Zydel A, Qadir A, Adams DJ. Varying the hydrophobic spacer to influence multicomponent gelation. Chem Commun (Camb) 2021; 57:7898-7901. [PMID: 34286734 DOI: 10.1039/d1cc02786g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mixing low molecular weight gelators (LMWGs) shows promise as a means of preparing innovative materials with exciting properties. Here, we investigate the effect of increasing hydrophobic chain length on the properties of the resulting multicomponent systems which are capable of showing ambidextrous phase behaviour on pH perturbation.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Bart Dietrich
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Adriana Trabold
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Agata Zydel
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Aleena Qadir
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
9
|
Facile preparation of agar/polyvinyl alcohol-based triple-network composite hydrogels with excellent mechanical performances. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Zhao R, Wang Y, Wang S, Zhao C, Gong X. The dissociation of physical interaction clusters under tensile deformation of hybrid double network gels. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|