1
|
Guo Y, He X, Williams GR, Zhou Y, Liao X, Xiao Z, Yu C, Liu Y. Tumor microenvironment-responsive hyperbranched polymers for controlled drug delivery. J Pharm Anal 2024; 14:101003. [PMID: 39831051 PMCID: PMC11742316 DOI: 10.1016/j.jpha.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 01/22/2025] Open
Abstract
Hyperbranched polymers (HBPs) have drawn great interest in the biomedical field on account of their special morphology, low viscosity, self-regulation, and facile preparation methods. Moreover, their large intramolecular cavities, high biocompatibility, biodegradability, and targeting properties render them very suitable for anti-tumor drug delivery. Recently, exploiting the specific characteristics of the tumor microenvironment, a range of multifunctional HBPs responsive to the tumor microenvironment have emerged. By further introducing various types of drugs through physical embedding or chemical coupling, the resulting HBPs based delivery systems have played a crucial part in improving drug stability, increasing effective drug concentration, decreasing drug toxicity and side effects, and enhancing anti-tumor effect. Here, based on different types of tumor microenvironment stimulation signals such as pH, redox, temperature, etc., we systematically review the preparation and response mechanism of HBPs, summarize the latest advances in drug delivery applications, and analyze the challenges and future research directions for such nanomaterials in biomedical clinical applications.
Collapse
Affiliation(s)
- Yuqiong Guo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinni He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | | | - Yue Zhou
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xinying Liao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ziyi Xiao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cuiyun Yu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yang Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- UCL School of Pharmacy, University College London, London, WC1N1AX, UK
| |
Collapse
|
2
|
Xia Y, Chen R, Ke Y, Xiang Z, Ma Z, Shi Q, Ataullakhanov FI, Panteleev M. Manipulation of ROS‐Responsiveness of Dextran with Thioether Side Chains. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Runhai Chen
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function Soochow University Suzhou 215123 China
| | - Fazly I. Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol 1 Samory Mashela St Moscow 117198 Russia
- Faculty of Physics Lomonosov Moscow State University Leninskie Gory, 1, build. 2, GSP‐1 Moscow 119991 Russia
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol 1 Samory Mashela St Moscow 117198 Russia
- Faculty of Physics Lomonosov Moscow State University Leninskie Gory, 1, build. 2, GSP‐1 Moscow 119991 Russia
| |
Collapse
|
3
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Gao F, Xiong Z. Reactive Oxygen Species Responsive Polymers for Drug Delivery Systems. Front Chem 2021; 9:649048. [PMID: 33968898 PMCID: PMC8103170 DOI: 10.3389/fchem.2021.649048] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/25/2021] [Indexed: 01/10/2023] Open
Abstract
Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms; however, as the concentration of ROS increases in the area of a lesion, this may undermine cellular homeostasis, leading to a series of diseases. Using cell-product species as triggers for targeted regulation of polymer structures and activity represents a promising approach for the treatment. ROS-responsive polymer carriers allow the targeted delivery of drugs, reduce toxicity and side effects on normal cells, and control the release of drugs, which are all advantages compared with traditional small-molecule chemotherapy agents. These formulations have attracted great interest due to their potential applications in biomedicine. In this review, recent progresses on ROS responsive polymer carriers are summarized, with a focus on the chemical mechanism of ROS-responsive polymers and the design of molecular structures for targeted drug delivery and controlled drug release. Meanwhile, we discuss the challenges and future prospects of its applications.
Collapse
Affiliation(s)
- Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry CAS, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
6
|
Chatterjee S, Anslyn EV, Bandyopadhyay A. Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chem Sci 2020; 12:1585-1599. [PMID: 34163920 PMCID: PMC8179052 DOI: 10.1039/d0sc05009a] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
Recently, reversible click reactions have found numerous applications in chemical biology, supramolecular chemistry, and biomedical applications. Boronic acid (BA)-mediated cis-diol conjugation is one of the best-studied reactions among them. An excellent understanding of the chemical properties and biocompatibility of BA-based compounds has inspired the exploration of novel chemistries using boron to fuel emergent sciences. This topical review focuses on the recent progress of iminoboronate and salicylhydroxamic-boronate constituted reversible click chemistries in the past decade. We highlight the mechanism of reversible kinetics and its applications in chemical biology, medicinal chemistry, biomedical devices, and material chemistry. This article also emphasizes the fundamental reactivity of these two conjugate chemistries with assorted nucleophiles at variable pHs, which is of utmost importance to any stimuli-responsive biological and material chemistry explorations.
Collapse
Affiliation(s)
- Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| | - Eric V Anslyn
- Department of Chemistry, University of Texas 1 University Station A1590 Austin Texas 78712 USA
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-781039 India
| |
Collapse
|