1
|
Benea IC, Dăescu D, Todea A, Nagy L, Keki S, Păușescu I, Pellis A, Peter F. Efficient biotransformation of biobased raw materials into novel polyesters/polyesteramides; comparative investigation of enzymatic synthesis of block and random copolymers and terpolymers. Int J Biol Macromol 2024; 282:137046. [PMID: 39481733 DOI: 10.1016/j.ijbiomac.2024.137046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Within the context of paving the way for a sustainable bioeconomy, there is a strong emphasis on utilizing bio-based raw materials as substitutes for fossil fuels in the production of polymers. When designing the synthesis of novel polymeric materials from bio-based building blocks, a promising green approach consists in utilizing enzymes as biocatalysts. This aspect is particularly important when aiming to obtain products from the class of polyesters and polyesteramides with biocompatible and biodegradable properties, as enzymes facilitate the synthesis of polymers that align closely with biological systems. Lipases have been proven to be very effective in the synthesis of polymers, particularly in the ring-opening polymerization of ε-caprolactone. Considering the possibility of performing the copolymerization of ε-caprolactone for obtaining random and block structures, this is the first comparative study of the enzymatic polymer synthesis utilizing an innovative approach of combining ring-opening polymerization with polycondensation. Terpolymers derived from ε-caprolactone and dimethyl itaconate or dimethyl adipate with either 1,8-octanediol or 1,8-octanediamine were obtained at 85 °C in a solventless systems, yielding products with a copolymer content of >85 % and weight-average molecular weight (Mw) up to 40,000 Da. The thermal properties and biodegradation behavior of the synthetized terpolymers were assessed.
Collapse
Affiliation(s)
- Ioana Cristina Benea
- University Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 300001, C. Telbisz 6, 300001 Timisoara, Romania; Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova, Italy
| | - Diana Dăescu
- University Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 300001, C. Telbisz 6, 300001 Timisoara, Romania
| | - Anamaria Todea
- University Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 300001, C. Telbisz 6, 300001 Timisoara, Romania
| | - Lajos Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Egyetem tér 1, 4032 Debrecen, Hungary
| | - Sandor Keki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Egyetem tér 1, 4032 Debrecen, Hungary
| | - Iulia Păușescu
- University Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 300001, C. Telbisz 6, 300001 Timisoara, Romania.
| | - Alessandro Pellis
- Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, 16146 Genova, Italy.
| | - Francisc Peter
- University Politehnica Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 300001, C. Telbisz 6, 300001 Timisoara, Romania
| |
Collapse
|
2
|
Kleybolte MM, Winnacker M. From Forest to Future: Synthesis of Sustainable High Molecular Weight Polyamides Using and Investigating the AROP of β-Pinene Lactam. Macromol Rapid Commun 2024; 45:e2300524. [PMID: 37903330 DOI: 10.1002/marc.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Polyamides (PA) are among the most essential and versatile polymers due to their outstanding characteristics, for example, high chemical resistance and temperature stability. Furthermore, nature-derived monomers can introduce hard-to-synthesize structures into the PAs for unique polymer properties. Pinene, as one of the most abundant terpenes in nature and its presumable stability-giving bicyclic structure, is therefore highly promising. This work presents simple anionic ring-opening polymerizations of β-pinene lactam (AROP) in-bulk and in solution. PAs with high molecular weights, suitable for further processing, are produced. Their good mechanical, thermal (Td s up to 440 °C), and transparent appearance render them promising high-performance biomaterials. In the following, the suitability of different initiators is discussed. Thereby, it is found that NaH is the most successful for in-bulk polymerization, with a degree of polymerization (DP) of about 322. For solution-AROP, iPrMgCl·LiCl is successfully used for the first time, achieving DPs up to about 163. The obtained PAs are also hot-pressed, and the dynamic mechanical properties are analyzed.
Collapse
Affiliation(s)
- Magdalena M Kleybolte
- Wacker-Chair of Macromolecular Chemistry, Technical University Munich, Lichtenbergstraße 4, Garching bei München, 85748, Deutschland
- Catalysis Research Center (CRC), Technical University Munich, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Deutschland
| | - Malte Winnacker
- Wacker-Chair of Macromolecular Chemistry, Technical University Munich, Lichtenbergstraße 4, Garching bei München, 85748, Deutschland
- Catalysis Research Center (CRC), Technical University Munich, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Deutschland
| |
Collapse
|
3
|
Yan K, Wang J, Wang Z, Yuan L. Bio-based monomers for amide-containing sustainable polymers. Chem Commun (Camb) 2023; 59:382-400. [PMID: 36524867 DOI: 10.1039/d2cc05161c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of sustainable polymers from renewable feedstocks is a fast-reviving field after the decades-long domination of petroleum-based polymers. Amide-containing polymers exhibit a wide range of properties depending on the type of amide (primary, secondary, and tertiary), amide density, and other molecular structural parameters (co-existing groups, molecular weight, and topology). Engineering amide groups into sustainable polymers via the "monomer approach" is an industrially proven strategy, while bio-based monomers are of enormous importance to bridge the gap between renewable sources and amide-containing sustainable polymers (AmSPs). This feature article aims at conceptualizing the monomer-design philosophy behind most of the reported AmSPs and is organized by discussing di-functional monomers for step-growth polymerization, cyclic monomers for ring-opening polymerization and amide-containing monomers for chain-growth polymerization. We also give a perspective on AmSPs with respect to monomer design and performance enhancement.
Collapse
Affiliation(s)
- Kangle Yan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Jie Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Zhongkai Wang
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| | - Liang Yuan
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
4
|
Kränzlein M, Pongratz S, Bruckmoser J, Bratić B, Breitsameter JM, Rieger B. Polyester synthesis based on 3-carene as renewable feedstock. Polym Chem 2022. [DOI: 10.1039/d2py00409g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing renewable feedstocks for the synthesis of biobased and preferrable biodegradable polyesters as substitute for fossile-based polymers remains one of the major challenges towards a sustainable polymer economy. One such...
Collapse
|
5
|
Lamparelli DH, Winnacker M, Capacchione C. Stereoregular Polymerization of Acyclic Terpenes. Chempluschem 2021; 87:e202100366. [PMID: 34674387 DOI: 10.1002/cplu.202100366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Indexed: 12/27/2022]
Abstract
The growing environmental pollution and the expected depleting of fossil resources have sparked interest in recent years for polymers obtained from monomers originating from renewable sources. Furthermore, nature can provide a variety of building blocks with special structural features (e. g. side groups or stereo-elements) that cannot be obtained so easily via fossil-based pathways. In this context, terpenes are widespread natural compounds coming from non-food crops, present in a large variety of structures, and ready to use as monomers with or without further modifications. The present review aims to provide an overview of how chemists can stereospecifically polymerize terpenes, particularly the acyclic ones like myrcene, ocimene, and farnesene, using different metal catalyst systems in coordination-insertion polymerization. Attention is also paid to their copolymers, which have recently been disclosed, and to the possible applications of these bio-based materials in various industrial sectors such as in the field of elastomers. © 2021 The Authors. ChemPlusChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- David Hermann Lamparelli
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747, Garching bei München, Germany.,Catalysis Research Center (CRC)', Technische Universität München, Ernst-Otto-Fischer-Straße 1, 85748, Garching bei München, Germany
| | - Carmine Capacchione
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
6
|
Yarolimek MR, Bookbinder HR, Coia BM, Kennemur JG. Ring-Opening Metathesis Polymerization of δ-Pinene: Well-Defined Polyolefins from Pine Sap. ACS Macro Lett 2021; 10:760-766. [PMID: 35549097 DOI: 10.1021/acsmacrolett.1c00284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Well-controlled ring-opening metathesis polymerization (ROMP) of δ-pinene is reported. The monomer is produced through a facile, metal-free, three-step synthesis from highly abundant and sustainable α-pinene. Using Grubbs third-generation catalyst, δ-pinene undergoes ROMP to high conversion (>95%) with molar mass up to 70 kg mol-1 and narrow dispersity (<1.2). A highly regioregular propagation mechanism was concluded by NMR spectroscopic analysis that revealed a head-to-tail (HT, >95%) microstructure and high trans content (>98%). Successful ROMP is corroborated with density functional theory calculations on δ-pinene's ring strain energy (∼35 kJ mol-1). Poly(δ-pinene) has a high glass transition temperature (∼104 °C) and a unique chiral microstructure bearing gem-dimethylcyclobutane rings. Controlled ROMP also allowed the synthesis of block copolymers containing segments of poly(δ-pinene) and polynorbornene which are discussed. Finally, bulk polymerization of δ-pinene is possible, indicating a greener approach to these materials, albeit with some loss of control.
Collapse
Affiliation(s)
- Mark R. Yarolimek
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Heather R. Bookbinder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Brianna M. Coia
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
7
|
Kleybolte MM, Winnacker M. β-Pinene-Derived Polyesteramides and Their Blends: Advances in Their Upscaling, Processing, and Characterization. Macromol Rapid Commun 2021; 42:e2100065. [PMID: 33960575 DOI: 10.1002/marc.202100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Indexed: 11/06/2022]
Abstract
Terpene-based polyesteramides (PEAs) are sustainable and have a variety of favorable properties, making them suitable for a wide range of applications and for contribution to a much more sustainable polymer industry. This work focuses on the synthesis of the lactam from β-pinene and its copolymerization with ε-caprolactone. An important step in synthesizing β-pinene lactam is the oxidation of β-pinene to nopinone. To make the established oxidative cleavage more sustainable and efficient, the required amounts of Al2 O3 and KMnO4 are significantly reduced by using H2 SO4 as a catalyst. For the Beckmann rearrangement various catalysts and co-reagents are screened. Among these, the reaction with tosyl chloride is found the most favorable. Subsequently, the chain lengths of the β-pinene-based PEAs are remarkably increased from 6000 g mol-1 to more than 25 100 g mol-1 by fine-tuning reaction time, temperature, and decreasing catalyst and initiator concentrations. Also, different catalysts for polymerization are tested. The resulting material shows melting temperatures of ≈55 °C and decomposition temperatures of 354 °C or higher. Processing via melt pressing or casting turned out to be quite difficult due to the polymer's brittleness. Furthermore, regarding biomedical applications, blends of PEA with polyethylene glycol were successfully prepared, yielding a more hydrophilic material.
Collapse
Affiliation(s)
- Magdalena Maria Kleybolte
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching bei München, 85747, Germany.,Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Germany
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, Garching bei München, 85747, Germany.,Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Straße 1, Garching bei München, 85748, Germany
| |
Collapse
|
8
|
Lamparelli DH, Kleybolte MM, Winnacker M, Capacchione C. Sustainable Myrcene-Based Elastomers via a Convenient Anionic Polymerization. Polymers (Basel) 2021; 13:838. [PMID: 33803378 PMCID: PMC7967150 DOI: 10.3390/polym13050838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Soluble heterocomplexes consisting of sodium hydride in combination with trialkylaluminum derivatives have been used as anionic initiating systems at 100 °C in toluene for convenient homo-, co- and ter-polymerization of myrcene with styrene and isoprene. In this way it has been possible to obtain elastomeric materials in a wide range of compositions with interesting thermal profiles and different polymeric architectures by simply modulating the alimentation feed and the (monomers)/(initiator systems) ratio. Especially, a complete study of the myrcene-styrene copolymers (PMS) was carried out, highlighting their tapered microstructures with high molecular weights (up to 159.8 KDa) and a single glass transition temperature. For PMS copolymer reactivity ratios, rmyr = 0.12 ± 0.003 and rsty = 3.18 ± 0.65 and rmyr = 0.10 ± 0.004 and rsty = 3.32 ± 0.68 were determined according to the Kelen-Tudos (KT) and extended Kelen-Tudos (exKT) methods, respectively. Finally, this study showed an easy accessible approach for the production of various elastomers by anionic copolymerization of renewable terpenes, such as myrcene, with commodities.
Collapse
Affiliation(s)
- David Hermann Lamparelli
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Giovanni Paolo II Str., 84084 Fisciano, Italy;
| | - Magdalena Maria Kleybolte
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4 Str., 85747 Garching bei München, Germany;
| | - Malte Winnacker
- WACKER-Chair of Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4 Str., 85747 Garching bei München, Germany;
- Catalysis Research Center (CRC), Ernst-Otto-Fischer-Straße 1, 85748 Garching bei München, Germany
| | - Carmine Capacchione
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, Giovanni Paolo II Str., 84084 Fisciano, Italy;
| |
Collapse
|
9
|
Abstract
The use of renewable terpene-based monomers for the preparation of sustainable functional polymers is highlighted.
Collapse
Affiliation(s)
- Francesco Della Monica
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute for Science & Technology (BIST)
- 43007 Tarragona
- Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ)
- The Barcelona Institute for Science & Technology (BIST)
- 43007 Tarragona
- Spain
- Catalan Institute for Research and Advanced Studies (ICREA)
| |
Collapse
|