1
|
Song Z, Liu J, Luo J, Ngai T, Kwok MH, Sun G. Photo-responsive Pickering emulsions triggered by in-situ pH modulation using a photoacid generator. J Colloid Interface Sci 2025; 679:1150-1158. [PMID: 39423681 DOI: 10.1016/j.jcis.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
HYPOTHESIS Pickering emulsions that respond to changes in pH by the addition of acid or alkali have been extensively studied, but the development of photo-responsive Pickering emulsions has been more challenging. This study attempts to demonstrate a novel approach to achieve photo-responsiveness in Pickering emulsions by incorporating a photoacid generator (PAG) into the oil phase. Upon UV irradiation, the PAG is expected to release protons (H+), which can then regulate the pH of the emulsion system and control its stability. EXPERIMENTS Amphiphilic colloidal particles obtained by modifying silica particles with poly (2-(dimethylamino)ethyl methacrylate) (SiO2-PDMAEMA) are used to stabilize the Pickering emulsions. The protonation and deprotonation of the SiO2-PDMAEMA particles at different pH values allow for the tuning of emulsion stability. By introducing the PAG into the stable Pickering emulsion system and applying UV irradiation to trigger the in-situ release of H+, the pH of the emulsion is systematically decreased, and the corresponding changes in emulsion stability are investigated. FINDINGS The results show that UV irradiation alone cannot induce emulsion instability. However, when PAG is added to the oil phase, the Pickering emulsions exhibit a significant decrease in pH under UV irradiation, ultimately leading to emulsion destabilization and phase separation. At a UV intensity of 20 mW/cm2 for 2 min, the H+ release from the PAG significantly lower the emulsion's pH, causing the SiO2-PDMAEMA particles to detach from the oil-water interface and resulting in emulsion instability. Higher concentrations of SiO2-PDMAEMA particles in the emulsion require more PAG to induce instability, as confirm by confocal laser scanning microscopy (CLSM) image. This study presents a versatile approach to develop photo-responsive Pickering emulsions which can have potential applications in areas such as drug delivery, cosmetics, and responsive materials.
Collapse
Affiliation(s)
- Zichun Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - To Ngai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Man-Hin Kwok
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Guanqing Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Zhang L, Li L, Chen Y, Pi J, Liu R, Zhu Y. Recent Advances and Challenges in Long Wavelength Sensitive Cationic Photoinitiating Systems. Polymers (Basel) 2023; 15:2524. [PMID: 37299323 PMCID: PMC10255707 DOI: 10.3390/polym15112524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
With the advantages offered by cationic photopolymerization (CP) such as broad wavelength activation, tolerance to oxygen, low shrinkage and the possibility of "dark cure", it has attracted extensive attention in photoresist, deep curing and other fields in recent years. The applied photoinitiating systems (PIS) play a crucial role as they can affect the speed and type of the polymerization and properties of the materials formed. In the past few decades, much effort has been invested into developing cationic photoinitiating systems (CPISs) that can be activated at long wavelengths and overcome technical problems and challenges faced. In this article, the latest developments in the long wavelength sensitive CPIS under ultraviolet (UV)/visible light-emitting diodes (LED) lights are reviewed. The objective is, furthermore, to show differences as well as parallels between different PIS and future perspectives.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Lun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ying Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Junyi Pi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Luo S, Jin S, Xu L, Liao Y, He R, Zhang J, Zhong L. Lignin-derived new hydrogen donors for photoinitiating systems in dental materials. J Dent 2023; 132:104477. [PMID: 36914066 DOI: 10.1016/j.jdent.2023.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
OBJECTIVES The aim of this study is to develop amine free photo-initiating system (PIs) for the photopolymerization of dental methacrylate resins, using seven new hydrogen donors HDA-HDG derived from β-O-4 lignin model. METHODS Seven experimental CQ/HD PIs were formulated with Bis-GMA/TEGDMA (70 w%/30 w%). CQ/EDB system was chosen as the comparison group. FTIR-ATR was used to monitor the polymerization kinetics and double bond conversion. Bleaching property and color stability were evaluated using a spectrophotometer. Molecular orbitals calculations were used to demonstrate C-H bond dissociation energies of the novel HDs. Depth of cure of the HD based systems were compared to the EDB based one. Cytotoxicity was also studied by CCK8 assay using tissue of mouse fibroblasts (L929 cells). RESULTS Compared to CQ/EDB system, the new CQ/HD systems show comparable or better photopolymerization performances (1 mm-thick samples). Comparable or even better bleaching properties were also obtained with the new amine-free systems. Comparing to EDB, all HDs exhibited significantly lower C-H bond dissociation energies by molecular orbitals calculations. Groups with new HD showed higher depth of cure. OD and RGR values were similar to that of the CQ/EDB group, ensuring the feasibility of the new HDs in dental materials. CLINICAL SIGNIFICANCE The new CQ/HD PI systems could be potentially useful in dental materials, presenting improvements in restorations' esthetic and biocompatibility.
Collapse
Affiliation(s)
- Shuxin Luo
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China
| | - Shuqi Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixia Xu
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China
| | - Yilei Liao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui He
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China,; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China
| | - Jian Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of, Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China.
| | - Liangjun Zhong
- College of Stomatology, Hangzhou Normal University, Hangzhou 310000, China,; Center of Stomatology, Affiliated Hospital of Hangzhou Normal University, 310000, Hangzhou, China.
| |
Collapse
|
4
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Electron Paramagnetic Resonance Spin Trapping (EPR–ST) Technique in Photopolymerization Processes. Catalysts 2022. [DOI: 10.3390/catal12070772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To face economic issues of the last ten years, free-radical photopolymerization (FRP) has known an impressive enlightenment. Multiple performing photoinitiating systems have been designed to perform photopolymerizations in the visible or near infrared (NIR) range. To fully understand the photochemical mechanisms involved upon light activation and characterize the nature of radicals implied in FRP, electron paramagnetic resonance coupled to the spin trapping (EPR–ST) method represents one of the most valuable techniques. In this context, the principle of EPR–ST and its uses in free-radical photopolymerization are entirely described.
Collapse
|