1
|
Saha NK, Salvia WS, Konkolewicz D, Hartley CS. Transient Covalent Polymers through Carbodiimide-Driven Assembly. Angew Chem Int Ed Engl 2024; 63:e202404933. [PMID: 38772695 DOI: 10.1002/anie.202404933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024]
Abstract
Biochemical systems make use of out-of-equilibrium polymers generated under kinetic control. Inspired by these systems, many abiotic supramolecular polymers driven by chemical fuel reactions have been reported. Conversely, polymers based on transient covalent bonds have received little attention, even though they have the potential to complement supramolecular systems by generating transient structures based on stronger bonds and by offering a straightforward tuning of reaction kinetics. In this study, we show that simple aqueous dicarboxylic acids give poly(anhydrides) when treated with the carbodiimide EDC. Transient covalent polymers with molecular weights exceeding 15,000 are generated which then decompose over the course of hours to weeks. Disassembly kinetics can be controlled using simple substituent effects in the monomer design. The impact of solvent polarity, carbodiimide concentration, temperature, pyridine concentration, and monomer concentration on polymer properties and lifetimes has been investigated. The results reveal substantial control over polymer assembly and disassembly kinetics, highlighting the potential for fine-tuned kinetic control in nonequilibrium polymerization systems.
Collapse
Affiliation(s)
- Nirob K Saha
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - William S Salvia
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, United States
| |
Collapse
|
2
|
Tierno D, Azzalini E, Farra R, Drioli S, Felluga F, Lazzarino M, Grassi G, Dapas B, Bonin S. Nanomechanical Characterization of Ovarian Cancer Cell Lines as a Marker of Response to 2c Treatment. Int J Mol Sci 2023; 24:ijms24087230. [PMID: 37108391 PMCID: PMC10139025 DOI: 10.3390/ijms24087230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Epithelial ovarian cancers (EOCs) are a heterogeneous group of tumors with different molecular and clinical features. In past decades, few improvements have been achieved in terms of EOC management and treatment efficacy, such that the 5-year survival rate of patients remained almost unchanged. A better characterization of EOCs' heterogeneity is needed to identify cancer vulnerabilities, stratify patients and adopt proper therapies. The mechanical features of malignant cells are emerging as new biomarkers of cancer invasiveness and drug resistance that can further improve our knowledge of EOC biology and allow the identification of new molecular targets. In this study, we determined the inter and intra-mechanical heterogeneity of eight ovarian cancer cell lines and their association with tumor invasiveness and resistance to an anti-tumoral drug with cytoskeleton depolymerization activity (2c).
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy
| | - Eros Azzalini
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy
| | - Rossella Farra
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy
| | - Sara Drioli
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy
| | - Fulvia Felluga
- Department of Chemical and Pharmaceutical Sciences (DSCF), University of Trieste, 34127 Trieste, Italy
| | - Marco Lazzarino
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (IOM), 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences (DSV), University of Trieste, 34128 Trieste, Italy
| | - Serena Bonin
- Department of Medical Sciences (DSM), University of Trieste, 34149 Trieste, Italy
| |
Collapse
|
3
|
Hybrid protein-polymer nanoparticles based on P(NVCL-co-DMAEMA) loaded with cisplatin as a potential anti-cancer agent. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Wright TA, Bennett C, Johnson MR, Fischesser H, Chandrarathne BM, Ram N, Maloof E, Tyler A, Upshaw CR, Stewart JM, Page RC, Konkolewicz D. Investigating the Impact of Polymer Length, Attachment Site, and Charge on Enzymatic Activity and Stability of Cellulase. Biomacromolecules 2022; 23:4097-4109. [PMID: 36130239 DOI: 10.1021/acs.biomac.2c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermophilic cellulase Cel5a from Fervidobacterium nodosum (FnCel5a) was conjugated with neutral, cationic, and anionic polymers of increasing molecular weights. The enzymatic activity toward an anionic soluble cellulose derivative, thermal stability, and functional chemical stability of these bioconjugates were investigated. The results suggest that increasing polymer chain length for polymers compatible with the substrate enhances the positive impact of polymer conjugation on enzymatic activity. Activity enhancements of nearly 100% were observed for bioconjugates with N,N-dimethyl acrylamide (DMAm) and N,N-dimethyl acrylamide-2-(N,N-dimethylamino)ethyl methacrylate (DMAm/DMAEMA) due to proposed polymer-substrate compatibility enabled by potential noncovalent interactions. Double conjugation of two functionally distinct polymers to wild-type and mutated FnCel5a using two conjugation methods was achieved. These doubly conjugated bioconjugates exhibited similar thermal stability to the unmodified wild-type enzyme, although enzymatic activity initially gained from conjugation was lost, suggesting that chain length may be a better tool for bioconjugate activity modulation than double conjugation.
Collapse
Affiliation(s)
- Thaiesha A Wright
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Camaryn Bennett
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Madolynn R Johnson
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Henry Fischesser
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | | | - Natasha Ram
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 3620, United States
| | - Elias Maloof
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Amoni Tyler
- Department of Agricultural and Life Sciences, Central State University, 1400 Brush Row Road, Wilberforce, Ohio 45384, United States
| | - Chanell R Upshaw
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Jamie M Stewart
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 East High Street, Oxford, Ohio 45056 United States
| |
Collapse
|