Arakawa Y, Arai Y. Photoinduced Phase Transitions of Imine-Based Liquid Crystal Dimers with Twist-Bend Nematic Phases.
MATERIALS (BASEL, SWITZERLAND) 2024;
17:3278. [PMID:
38998360 PMCID:
PMC11243583 DOI:
10.3390/ma17133278]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Photoisomerizable molecules in liquid crystals (LCs) allow for photoinduced phase transitions, facilitating applications in a wide variety of photoresponsive materials. In contrast to the widely investigated azobenzene structure, research on the photoinduced phase-transition behavior of imine-based LCs is considerably limited. We herein report the thermal and photoinduced phase-transition behaviors of photoisomerizable imine-based LC dimers with twist-bend nematic (NTB) phases. We synthesize two homologous series of ester- and thioether-linked N-(4-cyanobenzylidene)aniline-based bent-shaped LC dimers with an even number of carbon atoms (n = 2, 4, 6, 8, and 10) in the central alkylene spacers, namely, CBCOOnSBA(CN) and CBOCOnSBA(CN), possessing oppositely directed ester linkages, C=OO and OC=O, respectively. Their thermal phase-transition behavior is examined using polarizing optical microscopy and differential scanning calorimetry. All dimers form a monotropic NTB phase below the temperature of the conventional nematic (N) phase upon cooling. Remarkably, the NTB phases of CBCOOnSBA(CN) (n = 2, 4, 6, and 8) and CBOCOnSBA(CN) (n = 6 and 8) supercool to room temperature and vitrify without crystallization. In addition, the phase-transition temperatures and entropy changes of CBCOOnSBA(CN) are lower than those of CBOCOnSBA(CN) at the same n. Under UV light irradiation, the NTB and N phases transition to the N and isotropic phases, respectively, and reversibly return to their initial LC phases when the UV light is turned off.
Collapse