1
|
Zhang L, Yang Z, Xia W, Li J, Yang H, Yang S, Chen EQ. Liquid Crystal Promoted Self-Assembly of Statistical Copolymers into Diverse Nanostructures with Precise Dimensions. J Am Chem Soc 2024; 146:31221-31229. [PMID: 39487966 DOI: 10.1021/jacs.4c11649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
In both natural and synthetic systems, the segregation of multicomponent entities is vital for regulating functions and the ultimate usage of materials. To accomplish the desired properties via nanosegregation or microphase separation, great effort is usually demanded in the synthesis. For example, microphase-separated block copolymers rely on the delicate controlled/living polymerization of different monomers in sequence. Here, we demonstrate that a facile one-pot copolymerization can generate statistical side-chain copolymers exhibiting well-defined and diverse nanostructures. Two hemiphasmidic (or wedge-shaped) cyclooctene monomers were designed, differing in the peripheral tails of the wedges (dodecyl vs. tetraethylene glycol), with lengths of ca. 1 nm. When combining the two monomers together, the statistical copolymers can show columnar liquid crystal (LC) phase and microphase-separated structures of the two monomers, including sphere, cylinder, double gyroid, and lamella. To the best of our knowledge, this is the first time the gyroid phase has been achieved in statistical copolymers. We further demonstrate that changing the side chains to calamitic (or rod-like) mesogens or the backbone to less flexible polynorbornene, the statistical copolymers can also undergo microphase separation of the side chains. The intrinsic self-assembly scheme of statistical copolymers with mesogenic side chains, which are chemically accurate, affords the resultant nanostructures with precise periodicities at the 10- or sub-10-nm scale. Given the small chemical difference between the side-chain tails, microphase separation is promoted by the anisotropic packing of mesogens. It is validated that the statistical side-chain LC copolymers can be a versatile platform for creating nanostructured materials with tailored functionalities.
Collapse
Affiliation(s)
- Longlong Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Zifan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Wei Xia
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Jiahua Li
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Huai Yang
- Beijing Advanced Innovation Center for Materials Genome, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China
| | - Shuang Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
2
|
Barz M, Nuhn L, Hörpel G, Zentel R. From Self-Organization to Tumor-Immune Therapy: How Things Started and How They Evolved. Macromol Rapid Commun 2022; 43:e2100829. [PMID: 35729069 DOI: 10.1002/marc.202100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gerhard Hörpel
- GBH Gesellschaft für Batterie Know-how mbH, Lerchenhain 84, 48301, Nottuln, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|