1
|
Ibeanu N, Egbu R, Onyekuru L, Javaheri H, Tee Khaw P, R. Williams G, Brocchini S, Awwad S. Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics 2020; 12:E999. [PMID: 33096803 PMCID: PMC7589296 DOI: 10.3390/pharmaceutics12100999] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.
Collapse
Affiliation(s)
- Nkiruka Ibeanu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Raphael Egbu
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Lesley Onyekuru
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Hoda Javaheri
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Gareth R. Williams
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
| | - Steve Brocchini
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| | - Sahar Awwad
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (N.I.); (R.E.); (L.O.); (H.J.); (G.R.W.); (S.B.)
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK;
| |
Collapse
|
2
|
van Witteloostuijn SB, Pedersen SL, Jensen KJ. Half-Life Extension of Biopharmaceuticals using Chemical Methods: Alternatives to PEGylation. ChemMedChem 2016; 11:2474-2495. [DOI: 10.1002/cmdc.201600374] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Søren B. van Witteloostuijn
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
- Gubra ApS; Hørsholm Kongevej 11B 2970 Hørsholm Denmark
| | | | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
3
|
Villalonga ML, Díez P, Sánchez A, Gamella M, Pingarrón JM, Villalonga R. Neoglycoenzymes. Chem Rev 2014; 114:4868-917. [DOI: 10.1021/cr400290x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Paula Díez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - Alfredo Sánchez
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - María Gamella
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
| | - José M. Pingarrón
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| | - Reynaldo Villalonga
- Department
of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040-Madrid, Spain
- IMDEA
Nanoscience, Cantoblanco Universitary City, 28049-Madrid, Spain
| |
Collapse
|
4
|
Abstract
We synthesized a block copolymer composed of dextran and methoxy poly(ethylene glycol) (mPEG). To accomplish this, the end group of dextran was modified by reductive amination. The aminated dextran (Dextran-NH2) showed the intrinsic peaks of both dextran at 3~5.5 ppm and hexamethylene diamine at 1~2.6 ppm at1H nuclear magnetic resonance (NMR) spectrum. The amino end group of dextran was conjugated with mPEG to make the block copolymer consisting of dextran/mPEG (abbreviated as DexPEG). The synthesized aminated dextran and DexPEG were characterized using1H NMR and gel permeation chromatography (GPC). The molecular weight and conjugation yield were estimated by comparing the intensity ratio of the proton peaks of the glucose molecule (4.9 ppm and 3.3~4.0 ppm) to that of the ethylene group of mPEG (3.7 ppm). Abundant hydroxyl group in the dextran chain can be used as a source of bioactive agent conjugation.
Collapse
|
5
|
|
6
|
Valdivia A, Pérez Y, Gómez L, Ramírez HL, Schacht EH, Villalonga R. Pharmacokinetics and Stability Properties of Catalase Modified with Water-Soluble Polysaccharides. Arch Pharm (Weinheim) 2006; 339:372-7. [PMID: 16838281 DOI: 10.1002/ardp.200600037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bovine liver catalase (EC 1.11.1.6) was chemically modified with mannan, carboxymethylcellulose, and carboxymethylchitin. The enzyme retained about 48-97% of the initial specific activity after glycosidation with the polysaccharides. The prepared neoglycoenzyme was 1.9-5.7 fold more stable against the thermal inactivation processes at 55 degrees C, in comparison with the native counterpart. Also, the modified enzyme was more resistant to proteolytic degradation with trypsin. Pharmacokinetics studies revealed higher plasma half-life time for all the enzyme-polymer preparations, but better results were achieved for the enzyme modified with the anionic macromolecules.
Collapse
Affiliation(s)
- Aymara Valdivia
- Center for Enzyme Technology, University of Matanzas, Matanzas, Cuba
| | | | | | | | | | | |
Collapse
|