Fabrication of docetaxel surfaced Fe3O4 magnetite nanoparticles and their cytotoxicity on 4 T1 breast cancer cells.
ACTA ACUST UNITED AC 2012;
20:15. [PMID:
23351643 PMCID:
PMC3555717 DOI:
10.1186/2008-2231-20-15]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/17/2012] [Indexed: 02/01/2023]
Abstract
Background
In the recent years, there is an increasing attention to the using of Fe3O4 magnetite nanoparticles (MNPs) as drug delivery systems. Application of this nanoparticles could profit advantages of nanomedicine to enhance biological activity of pharmaceutical ingredients.
Methods
Fe3O4 MNPs were synthesised by a chemical method and characterized by transmission electron microscopy and energy-dispersive spectroscopy techniques. In the next step, docetaxel-coated Fe3O4 MNPs were prepared, using percipitation method. The surface chemistry of docetaxel-coated Fe3O4 MNPs as well as their thermal decomposition characteristics were examined using fourier transform infrared spectroscopy and thermogravimetric analyzer equipment, respectively. The cytotoxicity assay was conducted on 4 T1 breast cancer carsinoma by MTT assay to evaluate the possible in vitro antiproliferative effects of docetaxel-coated Fe3O4 MNPs.
Results
During precipitation process, docetaxel molecules were precipitated on the surface of Fe3O4 MNPs by the ratio of 3:100 w/w which indicates that each milligram of coated Fe3O4 MNPs averagely contained 30 μg pure docetaxel compound. Docetaxel showed aniproliferative effects against mentioned cell line. The higestest concentartion of docetaxel (80 μg/ml) caused about 80% cell death. However, the results demostarted that much lower amounts of docetaxel will be needed in combination of Fe3O4 MNPs to produce the potent antiproliferative effect compared to docetaxel alone. Dose response cytotoxicity assay of docetaxel-coated Fe3O4 MNPs against 4 T1 breast cancer cells showed that lower amount of docetaxel (0.6 μg/ml) can exhibit higher cytotoxic effect against this cancer cell line (90% cell death).
Collapse