1
|
Zhang T, Xu G, Blum FD. Eco-Friendly Room-Temperature Polymerization in Emulsions and Beyond. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2176514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Tan Zhang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Gu Xu
- Brewer Science Inc., Rolla, Missouri, USA
| | - Frank D. Blum
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
2
|
Fortenberry AW, Jankoski PE, Stacy EK, McCormick CL, Smith AE, Clemons TD. A Perspective on the History and Current Opportunities of Aqueous RAFT Polymerization. Macromol Rapid Commun 2022; 43:e2200414. [PMID: 35822936 PMCID: PMC10697073 DOI: 10.1002/marc.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Indexed: 02/06/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups - while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra-high molecular weight polymers, polymerization induced self-assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non-toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.
Collapse
Affiliation(s)
| | - Penelope E Jankoski
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Evan K Stacy
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Charles L McCormick
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Adam E Smith
- Department of Chemical Engineering, The University of Mississippi, Oxford, MS, 38677, USA
| | - Tristan D Clemons
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
3
|
Read E, Lonetti B, Gineste S, Sutton AT, Di Cola E, Castignolles P, Gaborieau M, Mingotaud AF, Destarac M, Marty JD. Mechanistic insights into the formation of polyion complex aggregates from cationic thermoresponsive diblock copolymers. J Colloid Interface Sci 2021; 590:268-276. [PMID: 33548610 DOI: 10.1016/j.jcis.2021.01.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/11/2020] [Accepted: 01/10/2021] [Indexed: 11/30/2022]
Abstract
HYPOTHESIS The formation of polyion complexes (PICs) comprising thermoresponsive polymers is intended to result in the formation of aggregates that undergo significant structural changes with temperature. Moreover the observed modifications might be critically affected by polymer structure and PICs composition. EXPERIMENTS Different block copolymers based on cationic poly(3-acrylamidopropyltrimethylammonium chloride) and thermoresponsive poly(N-isopropylacrylamide) were synthesized by aqueous RAFT/MADIX polymerization at room temperature. Addition of poly(acrylic acid) in a controlled fashion led to the formation of PICs aggregates. The structural changes induced by temperature were characterized by differential scanning calorimetry, Nuclear Magnetic Resonance spectroscopy and scattering methods. FINDINGS Thermoresponsive PICs undergo significant structural changes when increasing temperature above the cloud point of the thermoresponsive block. The reversibility of these phenomena depends strongly on the structural parameters of the block copolymers and on PICs composition.
Collapse
Affiliation(s)
- E Read
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - B Lonetti
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - S Gineste
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - A T Sutton
- Western Sydney University, ACROSS, School of Science, Locked Bag 1797, Penrith, NSW 2751, Australia; Future Industries Institute, University of South Australia, P.O. Box 2471, Adelaide, South Australia 5001, Australia
| | | | - P Castignolles
- Western Sydney University, ACROSS, School of Science, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - M Gaborieau
- Western Sydney University, ACROSS, School of Science, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - A-F Mingotaud
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - M Destarac
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - J-D Marty
- Laboratoire des IMRCP, Université Paul Sabatier, CNRS, UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
4
|
Liu J, Li L, Xu Z, Chen J, Zhao M, Dai C. CO2-responsive zwitterionic copolymer for effective emulsification and facile demulsification of crude heavy oil. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115166] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Guo J, Poros-Tarcali E, Pérez-Mercader J. Periodic Polymerization and the Generation of Polymer Giant Vesicles Autonomously Driven by pH Oscillatory Chemistry. Front Chem 2021; 9:576349. [PMID: 33777891 PMCID: PMC7992010 DOI: 10.3389/fchem.2021.576349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Using the radicals generated during pH oscillations, a semibatch pH oscillator is used as the chemical fuel and engine to drive polymerization induced self-assembly (PISA) for the one-pot autonomous synthesis of functional giant vesicles. Vesicles with diameters ranging from sub-micron to ∼5 µm are generated. Radical formation is found to be switched ON/OFF and be autonomously controlled by the pH oscillator itself, inducing a periodic polymerization process. The mechanism underlying these complex processes is studied and compared to conventional (non-oscillatory) initiation by the same redox pair. The pH oscillations along with the continuous increase in salt concentration in the semibatch reactor make the self-assembled objects undergo morphological evolution. This process provides a self-regulated means for the synthesis of soft giant polymersomes and opens the door for new applications of pH oscillators in a variety of contexts, from the exploration of new geochemical scenarios for the origin of life and the autonomous emergence of the necessary free-energy and proton gradients, to the creation of active functional microreactors and programmable release of cargo molecules for pH-responsive materials.
Collapse
Affiliation(s)
- Jinshan Guo
- Department of Earth and Planetary Science and Origins of Life Initiative, Harvard University, Cambridge, MA, United States
| | - Eszter Poros-Tarcali
- Department of Earth and Planetary Science and Origins of Life Initiative, Harvard University, Cambridge, MA, United States
| | - Juan Pérez-Mercader
- Department of Earth and Planetary Science and Origins of Life Initiative, Harvard University, Cambridge, MA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
6
|
Ma C, Zhang J, Zhang T, Sun H, Wu J, Shi J, Xie Z. Comparing the Rod-Like and Spherical BODIPY Nanoparticles in Cellular Imaging. Front Chem 2019; 7:765. [PMID: 31803715 PMCID: PMC6873392 DOI: 10.3389/fchem.2019.00765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
To design efficient nanoparticles for bioimaging, it is necessary to obtain nanoparticles with desired cellular uptake and biofunction. There are many studies have shown that cellular uptake largely depends on the geometric properties of nanoparticles. In this work, the organic nanoparticles with rod-like and spherical shapes were fabricated, and their cellular behaviors were studied and compared in detail via cellular uptake and bioimaging effect. The nanoparticles with spherical and rod-like morphology both can be internalized by HeLa and HepG2 cells, but the rod-like nanoparticles showed better imaging performance than their spherical counterpart. Above results presented that the rod-like nanoparticles possess great potential for bioimaging in efficient delivery and ideal imaging efficacy. Our studies may provide useful and fundamental information for designing efficient bioimaging systems.
Collapse
Affiliation(s)
- Chong Ma
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianxu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Haojie Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Wu
- International Journal of Geriatrics, Jilin University, Changchun, China
| | - Jingwei Shi
- Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
7
|
Reyhani A, McKenzie TG, Fu Q, Qiao GG. Fenton‐Chemistry‐Mediated Radical Polymerization. Macromol Rapid Commun 2019; 40:e1900220. [DOI: 10.1002/marc.201900220] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Amin Reyhani
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Thomas G. McKenzie
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
8
|
Chen X, Li R, Wong SHD, Wei K, Cui M, Chen H, Jiang Y, Yang B, Zhao P, Xu J, Chen H, Yin C, Lin S, Lee WYW, Jing Y, Li Z, Yang Z, Xia J, Chen G, Li G, Bian L. Conformational manipulation of scale-up prepared single-chain polymeric nanogels for multiscale regulation of cells. Nat Commun 2019; 10:2705. [PMID: 31221969 PMCID: PMC6586678 DOI: 10.1038/s41467-019-10640-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022] Open
Abstract
Folded single chain polymeric nano-objects are the molecular level soft material with ultra-small size. Here, we report an easy and scalable method for preparing single-chain nanogels (SCNGs) with improved efficiency. We further investigate the impact of the dynamic molecular conformational change of SCNGs on cellular interactions from molecular to bulk scale. First, the supramolecular unfoldable SCNGs efficiently deliver siRNAs into stem cells as a molecular drug carrier in a conformation-dependent manner. Furthermore, the conformation changes of SCNGs enable dynamic and precise manipulation of ligand tether structure on 2D biomaterial interfaces to regulate the ligand-receptor ligation and mechanosensing of cells. Lastly, the dynamic SCNGs as the building blocks provide effective energy dissipation to bulk biomaterials such as hydrogels, thereby protecting the encapsulated stem cells from deleterious mechanical shocks in 3D matrix. Such a bottom-up molecular tailoring strategy will inspire further applications of single-chain nano-objects in the biomedical area.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Miao Cui
- Beijing Genomic Institute-Shenzhen, Shenzhen, 518083, China
| | - Huaijun Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yuanzhang Jiang
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, Hong Kong
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Jianbin Xu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Heng Chen
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chao Yin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yihan Jing
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Zhen Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Zhengmeng Yang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, Hong Kong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, China.
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong, 999077, Hong Kong.
- China Orthopaedic Regenerative Medicine Group, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Lewis RW, Malic N, Saito K, Evans RA, Cameron NR. Ultra-high molecular weight linear coordination polymers with terpyridine ligands. Chem Sci 2019; 10:6174-6183. [PMID: 31360424 PMCID: PMC6585884 DOI: 10.1039/c9sc01115c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 11/21/2022] Open
Abstract
This first report of ultra-high molecular weight (>1000 kDa) linear coordination polymers demonstrates their use in agricultural spray drift control.
Ultra-high molecular weight (UHMW, Mn > 1000 kDa) polymeric drift control adjuvants (DCAs) for agricultural spraying are prone to mechanical degradation and rapidly lose performance. To overcome this, we have designed linear coordination polymers (LCPs) composed of 400 kDa telechelic bis-terpyridine end-functionalised polyacrylamide units, which ‘self-heal’ upon shearing through reformation of coordination bonds. After addition of Fe(ii) to dilute aqueous solutions of the terpyridine telechelics, UHMW LCPs were obtained as demonstrated by UV-vis spectroscopy, MALS GPC and intrinsic viscosity measurements. Importantly, these UHMW LCPs were shown to function as effective DCAs, reducing the formation of fine ‘driftable’ droplets during spray testing at concentrations as low as 100 ppm. Following mechanically-induced coordination bond-scission, the UHMW LCPs were found to recover up to 90% of their performance compared to un-sheared samples, at a rate dependent on the transition metal ion used to form the complex.
Collapse
Affiliation(s)
- Reece W Lewis
- Department of Materials Science and Engineering , Monash University , 22 Alliance Lane , Clayton , Victoria 3800 , Australia .
| | - Nino Malic
- CSIRO Manufacturing Flagship , Clayton , 3168 , Australia .
| | - Kei Saito
- School of Chemistry , Monash University , Clayton , 3800 , Australia
| | | | - Neil R Cameron
- Department of Materials Science and Engineering , Monash University , 22 Alliance Lane , Clayton , Victoria 3800 , Australia . .,School of Engineering , University of Warwick , Coventry , CV4 7AL , UK
| |
Collapse
|
10
|
Székely A, Klussmann M. Molecular Radical Chain Initiators for Ambient‐ to Low‐Temperature Applications. Chem Asian J 2018; 14:105-115. [DOI: 10.1002/asia.201801636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Anna Székely
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 2 45470 Mülheim an der Ruhr Germany
| | - Martin Klussmann
- Max Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 2 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
11
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Tian X, Ding J, Zhang B, Qiu F, Zhuang X, Chen Y. Recent Advances in RAFT Polymerization: Novel Initiation Mechanisms and Optoelectronic Applications. Polymers (Basel) 2018; 10:E318. [PMID: 30966354 PMCID: PMC6415088 DOI: 10.3390/polym10030318] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022] Open
Abstract
Reversible addition-fragmentation chain transfer (RAFT) is considered to be one of most famous reversible deactivation radical polymerization protocols. Benefiting from its living or controlled polymerization process, complex polymeric architectures with controlled molecular weight, low dispersity, as well as various functionality have been constructed, which could be applied in wide fields, including materials, biology, and electrology. Under the continuous research improvement, main achievements have focused on the development of new RAFT techniques, containing fancy initiation methods (e.g., photo, metal, enzyme, redox and acid), sulfur-free RAFT system and their applications in many fields. This review summarizes the current advances in major bright spot of novel RAFT techniques as well as their potential applications in the optoelectronic field, especially in the past a few years.
Collapse
Affiliation(s)
- Xiangyu Tian
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Junjie Ding
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Feng Qiu
- The State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
| | - Xiaodong Zhuang
- The State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
- Center for Advancing Electronics Dresden (CFAED) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Yu Chen
- Key Laboratory for Advanced Materials and Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Applied Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
13
|
Lloyd DJ, Nikolaou V, Collins J, Waldron C, Anastasaki A, Bassett SP, Howdle SM, Blanazs A, Wilson P, Kempe K, Haddleton DM. Controlled aqueous polymerization of acrylamides and acrylates and "in situ" depolymerization in the presence of dissolved CO2. Chem Commun (Camb) 2018; 52:6533-6. [PMID: 27111827 DOI: 10.1039/c6cc03027k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aqueous copper-mediated radical polymerization of acrylamides and acrylates in carbonated water resulted in high monomer conversions (t < 10 min) before undergoing depolymerization (60 min > t > 10 min). The regenerated monomer was characterized and repolymerized following deoxygenation of the resulting solutions to reyield polymers in high conversions that exhibit low dispersities.
Collapse
Affiliation(s)
- Danielle J Lloyd
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK.
| | - Vasiliki Nikolaou
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK.
| | - Jennifer Collins
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK.
| | - Christopher Waldron
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK.
| | - Athina Anastasaki
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK. and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Simon P Bassett
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Paul Wilson
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK. and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK. and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - David M Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL Gibbet Hill, West Midlands, UK. and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
14
|
Lewis RW, Evans RA, Malic N, Saito K, Cameron NR. Ultra-fast aqueous polymerisation of acrylamides by high power visible light direct photoactivation RAFT polymerisation. Polym Chem 2018. [DOI: 10.1039/c7py01752a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effect of visible LED power (λmax= 402 nm, 451 nm) on kinetics and control of direct photoactivation RAFT polymerisations of acrylamide and dimethylacrylamide are investigated.
Collapse
Affiliation(s)
- Reece W. Lewis
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
| | | | - Nino Malic
- CSIRO Manufacturing Flagship
- Clayton
- Australia
| | - Kei Saito
- School of Chemistry
- Monash University
- Clayton
- Australia
| | - Neil R. Cameron
- Department of Materials Science and Engineering
- Monash University
- Clayton
- Australia
- School of Engineering
| |
Collapse
|
15
|
Affiliation(s)
- Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
- Faculty of Pharmacy and Pharmaceutical
Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
16
|
Yeow J, Boyer C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700137. [PMID: 28725534 PMCID: PMC5514979 DOI: 10.1002/advs.201700137] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/20/2017] [Indexed: 05/17/2023]
Abstract
The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.
Collapse
Affiliation(s)
- Jonathan Yeow
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| | - Cyrille Boyer
- School of Chemical EngineeringCentre for Advanced Macromolecular Design (CAMD) and Australian Centre for Nanomedicine (ACN)UNSW SydneySydneyNSW2052Australia
| |
Collapse
|
17
|
Gräfe D, Frank P, Erdmann T, Richter A, Appelhans D, Voit B. Tetra-Sensitive Graft Copolymer Gels as Active Material of Chemomechanical Valves. ACS APPLIED MATERIALS & INTERFACES 2017; 9:7565-7576. [PMID: 28249364 DOI: 10.1021/acsami.6b14931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stimuli-responsive hydrogels combine sensor and actuator properties by converting an environmental stimulus into mechanical work. Those materials are highly interesting for applications as a chemomechanical valve in microsystem technologies. However, studies about key characteristics of hydrogels for this application are comparatively rare, and further research is needed to emphasize their real potential. The first part of this study depicts the synthesis of grafted hydrogels based on a poly(N-isopropylacrylamide) backbone and pH-sensitive poly(acrylic acid) graft chains. The chosen approach of grafted hydrogels provides the preparation of multiresponsive hydrogels, which retain temperature sensitivity besides being pH-responsive. A pronounced salt and solvent response is additionally achieved. Key characteristics for an application as a chemomechanical valve of the graft hydrogels are revealed: (1) independently addressable response to all stimuli, (2) significant volume change, (3) sharp transition, (4) reversible swelling-shrinking behavior, and (5) accelerated response time. To prove the concept of multiresponsive hydrogels for flow control, a net-poly(N-acrylamide)-g-poly(acrylic acid) hydrogel containing 0.6 mol % poly(acrylic acid)-vinyl is employed as active material for chemomechanical valves. Remarkably, the chemomechanical valve can be opened and closed in a fluidic platform with four different stimuli.
Collapse
Affiliation(s)
- David Gräfe
- Leibniz-Institut für Polymerforschung Dresden e. V. , Hohe Strasse 6, 01069 Dresden, Germany
| | | | - Tim Erdmann
- Leibniz-Institut für Polymerforschung Dresden e. V. , Hohe Strasse 6, 01069 Dresden, Germany
| | | | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e. V. , Hohe Strasse 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e. V. , Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
18
|
Vandenbergh J, Schweitzer-Chaput B, Klussmann M, Junkers T. Acid-Induced Room Temperature RAFT Polymerization: Synthesis and Mechanistic Insights. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joke Vandenbergh
- Polymer Reaction Design Group, Institute for Materials Research (IMO), Hasselt University, Campus Diepenbeek, Building D, B-3590 Diepenbeek, Belgium
| | | | - Martin Klussmann
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tanja Junkers
- Polymer Reaction Design Group, Institute for Materials Research (IMO), Hasselt University, Campus Diepenbeek, Building D, B-3590 Diepenbeek, Belgium
- IMEC Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
19
|
BISWAS CHANDRASEKHAR, MITRA KHEYANATH, SINGH SHIKHA, RAY BISWAJIT. Synthesis of low polydisperse isotactic poly(N-isopropylacrylamide)s in environment-friendly and less toxic methanol-water mixtures by RAFT polymerization. J CHEM SCI 2016. [DOI: 10.1007/s12039-016-1033-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Yang H, Xue S, Pan J, Gong F, Pu H. Preparation of core–shell attapulgite particles by redox-initiated surface reversible addition–fragmentation chain transfer polymerization via a “graft from” approach. RSC Adv 2016. [DOI: 10.1039/c5ra25078a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polymethyl methacrylate layer was grown uniformly from attapulgite by using surface-initiated reversible addition–fragmentation chain transfer polymerization via redox initiation system.
Collapse
Affiliation(s)
- Haicun Yang
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| | - Sheng Xue
- School of Materials Science and Engineering
- Changzhou University
- Changzhou
- China
| | - Ji Pan
- School of Materials Science and Engineering
- Changzhou University
- Changzhou
- China
| | - Fanghong Gong
- School of Mechanical Technology
- Wuxi Institute of Technology
- Wuxi
- China
- School of Materials Science and Engineering
| | - Hongting Pu
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| |
Collapse
|
21
|
Luo J, Li M, Xin M, Sun W. Benzoyl Peroxide/2-Vinylpyridine Synergy in RAFT Polymerization: Synthesis of Poly(2-vinylpyridine) with Low Dispersity at Ambient Temperature. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juxiang Luo
- College of Material Science and Engineering; Huaqiao University; Xiamen 361021 P.R. China
- School of Resources and Chemical Engineering; Sanming University; Sanming 365004 P.R. China
| | - Mingchun Li
- College of Material Science and Engineering; Huaqiao University; Xiamen 361021 P.R. China
| | - Meihua Xin
- College of Material Science and Engineering; Huaqiao University; Xiamen 361021 P.R. China
| | - Weifu Sun
- School of Aerospace Mechanical and Mechatronic Engineering; The University of Sydney; NSW 2006 Australia
| |
Collapse
|
22
|
Martin L, Gody G, Perrier S. Preparation of complex multiblock copolymers via aqueous RAFT polymerization at room temperature. Polym Chem 2015. [DOI: 10.1039/c5py00478k] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature RAFT polymerisation for the design of multiblock acrylate/acrylamide copolymers.
Collapse
Affiliation(s)
- Liam Martin
- Department of Chemistry
- The University of Warwick
- UK
| | | | - Sébastien Perrier
- Department of Chemistry
- The University of Warwick
- UK
- Faculty of Pharmacy and Pharmaceutical Sciences
- Monash University
| |
Collapse
|
23
|
Read E, Guinaudeau A, James Wilson D, Cadix A, Violleau F, Destarac M. Low temperature RAFT/MADIX gel polymerisation: access to controlled ultra-high molar mass polyacrylamides. Polym Chem 2014. [DOI: 10.1039/c3py01750h] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Kotsuchibashi Y, Narain R. Dual-temperature and pH responsive (ethylene glycol)-based nanogels via structural design. Polym Chem 2014. [DOI: 10.1039/c3py01772a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dual-temperature and pH responsive (ethylene glycol)-based nanogels were synthesized. Both the core and the shell of the nanogels showed a lower critical solution temperature (LCST) and the LCST of the shell was strongly affected by the solution pH and salt concentration due to the presence of carboxylic acid groups at the nanogel surface.
Collapse
Affiliation(s)
- Yohei Kotsuchibashi
- International Center for Young Scientists (ICYS) and International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
- Department of Chemical and Materials Engineering
| | - Ravin Narain
- Department of Chemical and Materials Engineering
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
25
|
Chai W, Zhang Y, Hou Y. Well-defined cationic polyacrylamides with dot-charges: synthesis via an aqueous living RAFT polymerization, characterization, and intrinsic viscosity. Polym Chem 2013. [DOI: 10.1039/c2py20808c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Grishin DF, Grishin ID. Controlled radical polymerization: Prospects for application for industrial synthesis of polymers (Review). RUSS J APPL CHEM+ 2012. [DOI: 10.1134/s1070427211120019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Liu G, Qiu Q, Shen W, An Z. Aqueous Dispersion Polymerization of 2-Methoxyethyl Acrylate for the Synthesis of Biocompatible Nanoparticles Using a Hydrophilic RAFT Polymer and a Redox Initiator. Macromolecules 2011. [DOI: 10.1021/ma200984h] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Guangyao Liu
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Qian Qiu
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Wenqing Shen
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
28
|
O'connor P, Zetterlund PB, Aldabbagh F. Nitroxide-mediated stabilizer-free inverse suspension polymerization of N
-isopropylacrylamide in supercritical carbon dioxide. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24580] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
|
30
|
Millard PE, Barner L, Reinhardt J, Buchmeiser MR, Barner-Kowollik C, Müller AH. Synthesis of water-soluble homo- and block-copolymers by RAFT polymerization under γ-irradiation in aqueous media. POLYMER 2010. [DOI: 10.1016/j.polymer.2010.07.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Zhang W, Zhang W, Zhang Z, Cheng Z, Tu Y, Qiu Y, Zhu X. Thermo-responsive fluorescent micelles from amphiphilic A3B miktoarm star copolymers prepared via a combination of SET-LRP and RAFT polymerization. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24214] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
32
|
Hu J, Ge Z, Zhou Y, Zhang Y, Liu S. Unique Thermo-Induced Sequential Gel−Sol−Gel Transition of Responsive Multiblock Copolymer-Based Hydrogels. Macromolecules 2010. [DOI: 10.1021/ma100813m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueming Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanfeng Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Destarac M. Controlled Radical Polymerization: Industrial Stakes, Obstacles and Achievements. MACROMOL REACT ENG 2010. [DOI: 10.1002/mren.200900087] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Sun XL, He WD, Li J, Li LY, Zhang BY, Pan TT. RAFT cryopolymerizations ofN,N-dimethylacrylamide andN-isopropylacrylamide in moderately frozen aqueous solution. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Shi Y, Liu G, Gao H, Lu L, Cai Y. Effect of Mild Visible Light on Rapid Aqueous RAFT Polymerization of Water-Soluble Acrylic Monomers at Ambient Temperature: Initiation and Activation. Macromolecules 2009. [DOI: 10.1021/ma9000513] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yi Shi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guhuan Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huan Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Lican Lu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuanli Cai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
36
|
Shi Y, Gao H, Lu L, Cai Y. Ultra-fast RAFT polymerisation of poly(ethylene glycol) acrylate in aqueous media under mild visible light radiation at 25 degrees C. Chem Commun (Camb) 2009:1368-70. [PMID: 19259590 DOI: 10.1039/b821486g] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mild visible light was sufficient to activate RAFT polymerisation of poly(ethylene glycol) methyl ether acrylate in 50 wt% water at 25 degrees C, leading to an ultra-fast and well-controlled living RAFT polymerisation with more than 80% monomer conversion; this is the first example of an ultra-fast RAFT polymerisation under such environmentally friendly mild aqueous conditions.
Collapse
Affiliation(s)
- Yi Shi
- College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | | | | | | |
Collapse
|