1
|
Liu C, Jiang S, Luo C, Lu Y. State Transitions and Crystalline Structures of Single Polyethylene Rings: MD Simulations. J Phys Chem B 2024; 128:6598-6609. [PMID: 38941574 DOI: 10.1021/acs.jpcb.4c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
This study investigates the structural changes of cyclic polyethylene (PE) single chains during cooling through molecular dynamics simulations. The influence of topological constraint on a ring is examined by comparing it with the results of its linear counterpart. A pseudo phase diagram of state transition for PE rings based on length and temperature is constructed, revealing a consistent chain-folding transition during cooling. The shape anisotropy of short crystallized cyclic chains exhibits oscillations with chain length, leading to a more pronounced odd-even effect in single cyclic chains compared with the linear ones. A honeycomb model is proposed to elucidate the odd-even effect of chain folding in crystalline structures of single linear and cyclic chains, and we discuss its potential to predict surface tension. Analyses of the tight folding model and the re-entry modes demonstrate that a cyclic chain possesses a shorter average crystalline stem length and a more compact folded structure than its linear counterpart. The findings highlight the impact of topological change on crystallization and the odd-even effect of chain length, providing valuable insights for understanding polymer crystallization with different topologies.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shengming Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Zhu L, Li J, Li H, Liu B, Chen J, Jiang S. Crystallization and melting of unentangled poly(ε-caprolactone) cycles containing pendants. SOFT MATTER 2023. [PMID: 37470097 DOI: 10.1039/d3sm00591g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The Rouse model provides a basic framework to understand the chain dynamics of polymers, which is confirmed to be more suitable for exploring the linear dynamics of unentangled polymers. The crystalline morphology governed by chain dynamics and crystallization kinetics is expected to differ in linear and cyclic polymers. Cyclic poly(ε-caprolactone)s (c-PCLs) containing two bi-anthracenyl group pendants with molecular weights close to the critical molecular weight (Mc) were synthesized to investigate the chain dynamics based crystallization and melting behavior by DSC, POM, and in situ simultaneous small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) investigations during heating of the isothermally crystallized samples. Double endothermic peaks were observed in the DSC curves with a low heating rate of c-PCLs without entanglement after isothermal crystallization, especially for c-PCLs with Mc. The structure evolution of the crystalline structures observed from the in situ investigations during the heating and double endothermic peaks in DSC heating curves of the c-PCLs indicate the role of pendants in the chain dynamics, which leads to the reorganization of the metastable structures. Banded spherulites of c-PCL without entanglement were observed for the first time, and the uneven growth of spherulites along the radial direction may be caused by the mismatch between chain dynamics and crystallization kinetics.
Collapse
Affiliation(s)
- Liuyong Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingqing Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongfei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Binyuan Liu
- Hebei Key Laboratory of Functional Polymer Materials, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin 300130, China.
| | - Jizhong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shichun Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Hagita K, Murashima T, Sakata N, Shimokawa K, Deguchi T, Uehara E, Fujiwara S. Molecular Dynamics of Topological Barriers on the Crystallization Behavior of Ring Polyethylene Melts with Trefoil Knots. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka239-8686, Japan
| | - Takahiro Murashima
- Department of Physics, Tohoku University, 6-3, Aramaki-aza-Aoba, Aoba-ku, Sendai980-8578, Japan
| | - Naoki Sakata
- Department of Mathematics, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama338-8570, Japan
- Department of Physics, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| | - Koya Shimokawa
- Department of Mathematics, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama338-8570, Japan
- Department of Mathematics, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| | - Tetsuo Deguchi
- Department of Physics, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| | - Erica Uehara
- Department of Physics, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo112-8610, Japan
| | - Susumu Fujiwara
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto606-8585, Japan
| |
Collapse
|
4
|
Ochs J, Pagnacco CA, Barroso-Bujans F. Macrocyclic polymers: Synthesis, purification, properties and applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jamornsuriya S, Vao-soongnern V. Molecular simulation of an initial stage of the ordered-structure formation of linear and ring polymers upon cooling from the melts. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Kobayashi K, Yamazaki S, Kimura K. Formation of shish-like fibril crystals from the melt of blends of cyclic and linear polyethylene under shear flow. Polym J 2022. [DOI: 10.1038/s41428-022-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Liu R, Nie Y, Ming Y, Hao T, Zhou Z. Simulations on polymer nanocomposite crystallization. POLYMER CRYSTALLIZATION 2021. [DOI: 10.1002/pcr2.10214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Rongjuan Liu
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yijing Nie
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Yongqiang Ming
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Tongfan Hao
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| | - Zhiping Zhou
- Research School of Polymeric Materials, School of Materials Science and Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
8
|
Ruiz MB, Pérez-Camargo RA, López JV, Penott-Chang E, Múgica A, Coulembier O, Müller AJ. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Int J Biol Macromol 2021; 186:255-267. [PMID: 34246673 DOI: 10.1016/j.ijbiomac.2021.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Polylactide is one of the most versatile biopolymers, but its slow crystallization limits its temperature usage range. Hence finding ways to enhance it is crucial to widen its applications. Linear and cyclic poly (L-lactide) (l-PLLA and c-PLLA) of similarly low molecular weights (MW) were synthesized by ring-opening polymerization of L-lactide, and ring-expansion methodology, respectively. Two types of blends were prepared by solution mixing: (a) l-PLLA/c-PLLA, at extreme compositions (rich in linear or in cyclic chains), and (b) blends of each of these low MW materials with a commercial high MW linear PLA. The crystallization of the different blends was evaluated by polarized light optical microscopy and differential scanning calorimetry. It was found, for the first time, that in the l-PLLA rich blends, small amounts of c-PLLA (i.e., 5 and 10 wt%) increase the nucleation density, nucleation rate (1/τ0), spherulitic growth rate (G), and overall crystallization rate (1/τ50%), when compared to neat l-PLLA, due to a synergistic effect (i.e., nucleation plus plasticization). In contrast, the opposite effect was found in the c-PLLA rich blends. The addition of small amounts of l-PLLA to a matrix of c-PLLA chains causes a decrease in the nucleation density, 1/τ0, G, and 1/τ50% values, due to threading effects between cyclic and linear chains. Small amounts of l-PLLA and c-PLLA enhance the crystallization ability of a commercial high MW linear PLA without affecting its melting temperature. The l-PLLA only acts as a plasticizer for the PLA matrix, whereas c-PLLA has a synergistic effect in accelerating the crystallization of PLA that goes beyond simple plasticization. The addition of small amounts of c-PLLA affects not only PLA crystal growth but also its nucleation due to the unique cyclic chains topology.
Collapse
Affiliation(s)
- Marina Betegón Ruiz
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Ricardo A Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Juan V López
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Evis Penott-Chang
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials, University of Mons - UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
9
|
Xu J, Wen L, Zhang F, Lin W, Zhang L. Self-assembly of cyclic grafted copolymers with rigid rings and their potential as drug nanocarriers. J Colloid Interface Sci 2021; 597:114-125. [PMID: 33892419 DOI: 10.1016/j.jcis.2021.03.139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023]
Abstract
Enhancing the performance of polymer micelles by purposeful regulation of their structures is a challenging topic that receives widespread attention. In this study, we systematically conduct a comparative study between cyclic grafted copolymers with rigid and flexible rings in the self-assembly behavior via dissipative particle dynamics (DPD) simulation. With a focus on the possible stacking ways of rigid rings, we propose the energy-driven packing mechanism of cyclic grafted copolymers with rigid rings. For cyclic grafted copolymers with large ring size (14 and 21-membered rings), rigid rings present a novel channel-layer-combination layout, which is determined by the balance between the potential energy of micelles (Emicelle) and the interaction energy between water and micelles (Eint). Based on this mechanism, we further regulate a series of complex self-assembling structures, including curved rod-like, T-shape, annular and helical micelles. Compared with flexible copolymers, cyclic grafted copolymers with rigid rings provide a larger and loose hydrophobic core and higher structural stability with micelles due to the unique packing way of rigid rings. Therefore, their micelles have a great potential as drug nanocarriers. They possess a better drug loading capacity and disassemble more quickly than flexible counterparts under acidic tumor microenvironment. Furthermore, the endocytosis kinetics of rigid micelles is faster than the flexible counterparts for the adsorption and wrapping process. This study may provide a reasonable idea of structural design for polymer micelles to enhance their performance in biomedical applications.
Collapse
Affiliation(s)
- Jianchang Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liyang Wen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lijuan Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
Morphology and growth rate of spherulite of cyclic poly(ε-caprolactone) having a triazole group at the closing point. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Liénard R, De Winter J, Coulembier O. Cyclic polymers: Advances in their synthesis, properties, and biomedical applications. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200236] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Romain Liénard
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs) Interdisciplinary Center for Mass Spectrometry (CISMa), University of Mons Mons Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM) Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons Mons Belgium
| |
Collapse
|
12
|
Differences in Crystallization Behaviors between Cyclic and Linear Polymer Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2403-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Ono R, Atarashi H, Yamazaki S, Kimura K. Molecular weight dependence of the growth rate of spherulite of cyclic poly(ε-caprolactone) polymerized by ring expansion reaction. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Hagita K, Fujiwara S, Iwaoka N. An accelerated united-atom molecular dynamics simulation on the fast crystallization of ring polyethylene melts. J Chem Phys 2019; 150:074901. [PMID: 30795675 DOI: 10.1063/1.5080332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To investigate crystallinities based on trans-structures, we determined the differences in the crystallization properties of ring and linear polymers by performing united-atom-model molecular dynamics (MD) simulations of homogeneous polyethylene melts of equal length, N, which refers to the number of monomers per chain. Modified parameters based on the DREIDING force field for the CH2 units were used in order to accelerate the crystallization process. To detect polymer crystallization, we introduced some local-order parameters that relate to trans-segments in addition to common crystallinities using neighboring bond orders. Through quenching MD simulations at 5 K/ns, we roughly determined temperature thresholds, Tth, at which crystallization is observed although it was hard to determine the precise Tth as observed in the laboratory time frame with the present computing resources. When N was relatively small (100 and 200), Tth was determined to be 320 and 350 K for the linear- and ring-polyethylene melts, respectively, while Tth was found to be 330 and 350 K, respectively, when N was 1000. Having confirmed that the crystallization of a ring-polyethylene melt occurs faster than that of the analogous linear melt, we conclude that the trans-segment-based crystallinities are effective for the analysis of local crystal behavior.
Collapse
Affiliation(s)
- Katsumi Hagita
- Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan
| | - Susumu Fujiwara
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Nobuyuki Iwaoka
- Tsuruoka College, National Institute of Technology, Tsuruoka 997-8511, Japan
| |
Collapse
|
15
|
Mato Y, Honda K, Tajima K, Yamamoto T, Isono T, Satoh T. A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Chem Sci 2019; 10:440-446. [PMID: 30746091 PMCID: PMC6335864 DOI: 10.1039/c8sc04006k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 11/21/2022] Open
Abstract
Cage-shaped polymers, or "macromolecular cages", are of great interest as the macromolecular analogues of molecular cages because of their various potential applications in supramolecular chemistry and materials science. However, the systematic synthesis of macromolecular cages remains a great challenge. Herein, we describe a robust and versatile synthetic strategy for macromolecular cages with defined arm numbers and sizes based on the intramolecular consecutive cyclization of highly reactive norbornene groups attached to each end of the arms of a star-shaped polymer precursor. The cyclizations of three-, four-, six-, and eight-armed star-shaped poly(ε-caprolactone)s (PCLs) bearing a norbornenyl group at each arm terminus were effected with Grubbs' third generation catalyst at high dilution. 1H NMR, SEC, and MALDI-TOF MS analyses revealed that the reaction proceeded to produce the desired macromolecular cages with sufficient purity. The molecular sizes of the macromolecular cages were controlled by simply changing the molecular weight of the star-shaped polymer precursors. Systematic investigation of the structure-property relationships confirmed that the macromolecular cages adopt a much more compact conformation, in both the solution and bulk states, as compared to their linear and star-shaped counterparts. This synthetic approach marks a significant advance in the synthesis of complex macromolecular architectures and provides a platform for novel applications using cage-shaped molecules with polymer frameworks.
Collapse
Affiliation(s)
- Yoshinobu Mato
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Kohei Honda
- Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Kenji Tajima
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Takuya Yamamoto
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Takuya Isono
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| | - Toshifumi Satoh
- Division of Applied Chemistry , Faculty of Engineering , Hokkaido University , Sapporo 060-8628 , Japan . ;
| |
Collapse
|
16
|
Iyer K, Muthukumar M. Langevin dynamics simulation of crystallization of ring polymers. J Chem Phys 2018; 148:244904. [DOI: 10.1063/1.5023602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Kiran Iyer
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
17
|
Zaldua N, Liénard R, Josse T, Zubitur M, Mugica A, Iturrospe A, Arbe A, De Winter J, Coulembier O, Müller AJ. Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(l-lactide) and Poly(d-lactide). Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02638] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | | | | | | | | | - Amaia Iturrospe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Arantxa Arbe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | | | | | | |
Collapse
|
18
|
Xiao H, Luo C, Yan D, Sommer JU. Molecular Dynamics Simulation of Crystallization Cyclic Polymer Melts As Compared to Their Linear Counterparts. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01570] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Hongyi Xiao
- Department
of Physics, Beijing Normal University, 100875 Beijing, China
- Institute
Theory of Polymers, Leibniz-Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Chuanfu Luo
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Dadong Yan
- Department
of Physics, Beijing Normal University, 100875 Beijing, China
| | - Jens-Uwe Sommer
- Institute
Theory of Polymers, Leibniz-Institute of Polymer Research Dresden, 01069 Dresden, Germany
| |
Collapse
|
19
|
Honda S, Adachi K, Yamamoto T, Tezuka Y. A Twisting Ring Polymer: Synthesis and Thermally Induced Chiroptical Responses of a Cyclic Poly(tetrahydrofuran) Having Axially Chiral Units. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Satoshi Honda
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kaoru Adachi
- Department
of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki,
Sakyo-ku, Kyoto 606-8585, Japan
| | - Takuya Yamamoto
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yasuyuki Tezuka
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
20
|
Delbosc N, De Winter J, Moins S, Persoons A, Dubois P, Coulembier O. Macrocyclic P3HT Obtained by Intramolecular McMurry Coupling of Linear Bis-Aldehyde Polymer: A Direct Comparison with Linear Homologue. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - André Persoons
- Laboratory
of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200D, Box 2425, B-3001 Leuven, Belgium
| | - Philippe Dubois
- National
Composite Center-Luxembourg, Luxembourg Institute of Science and Technology, 4 rue Bommel, L-4940 Hautcharage, Luxembourg
| | | |
Collapse
|
21
|
Baba E, Yatsunami T, Tezuka Y, Yamamoto T. Formation and Properties of Vesicles from Cyclic Amphiphilic PS-PEO Block Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10344-10349. [PMID: 27623059 DOI: 10.1021/acs.langmuir.6b03148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Linear polystyrene-poly(ethylene oxide)-polystyrene (PS-PEO-PS) block copolymers and corresponding cyclized PS-PEO counterparts with three different PS molecular weights were synthesized and self-assembled to investigate the effects arising from the topology. Linear PS5-PEO45-PS5 (L1) and cyclic PS10-PEO45 (C1) formed micelles. As previously reported for poly(n-butyl acrylate) and PEO block copolymers, the micelles from C1 showed more than 30 °C higher phase transition temperature (cloud point, Tc) than those from L1. Linear PS10-PEO45-PS10 (L2) and cyclic PS20-PEO45 (C2) resulted in the formation of a structure called large compound micelles. Self-assembly of linear PS40-PEO48-PS40 (L3) and cyclic PS86-PEO48 (C3) lead to the formation of vesicles. The vesicles were characterized by TEM, DLS, and SLS. Remarkably, the vesicles from L3 (Tc = 69, 59, and 48 °C in the presence of 1, 5, and 10 wt % of NaCl, respectively) were found to be somewhat more thermally stable than those from C3 (Tc = 62, 52, and 43 °C in the presence of 1, 5, and 10 wt % of NaCl, respectively). This trend of the thermal stability was counterintuitively opposed to the case of the micelles. Moreover, Tc of the vesicles was controlled by the ratio of L3 and C3.
Collapse
Affiliation(s)
- Eisuke Baba
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Toshiaki Yatsunami
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takuya Yamamoto
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology , O-okayama, Meguro-ku, Tokyo 152-8552, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University , Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
22
|
Zardalidis G, Mars J, Allgaier J, Mezger M, Richter D, Floudas G. Influence of chain topology on polymer crystallization: poly(ethylene oxide) (PEO) rings vs. linear chains. SOFT MATTER 2016; 12:8124-8134. [PMID: 27714349 DOI: 10.1039/c6sm01622g] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The absence of entanglements, the more compact structure and the faster diffusion in melts of cyclic poly(ethylene oxide) (PEO) chains have consequences on their crystallization behavior at the lamellar and spherulitic length scales. Rings with molecular weight below the entanglement molecular weight (M < Me), attain the equilibrium configuration composed from twice-folded chains with a lamellar periodicity that is half of the corresponding linear chains. Rings with M > Me undergo distinct step-like conformational changes to a crystalline lamellar with the equilibrium configuration. Rings melt from this configuration in the absence of crystal thickening in sharp contrast to linear chains. In general, rings more easily attain their extended equilibrium configuration due to strained segments and the absence of entanglements. In addition, rings have a higher equilibrium melting temperature. At the level of the spherulitic superstructure, growth rates are much faster for rings reflecting the faster diffusion and more compact structure. With respect to the segmental dynamics in their semi-crystalline state, ring PEOs with a steepness index of ∼34 form some of the "strongest" glasses.
Collapse
Affiliation(s)
- George Zardalidis
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece.
| | - Julian Mars
- Institute of Physics, Johannes Gutenberg University Mainz and Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jürgen Allgaier
- Jülich Centre for Neutron Science and Institute for Complex Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Markus Mezger
- Institute of Physics, Johannes Gutenberg University Mainz and Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Dieter Richter
- Jülich Centre for Neutron Science and Institute for Complex Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 451 10 Ioannina, Greece.
| |
Collapse
|
23
|
Non-monotonic molecular weight dependence of crystallization rates of linear and cyclic poly(epsilon-caprolactone)s in a wide temperature range. POLYM INT 2016. [DOI: 10.1002/pi.5157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Yamamoto T, Yagyu S, Tezuka Y. Light- and Heat-Triggered Reversible Linear–Cyclic Topological Conversion of Telechelic Polymers with Anthryl End Groups. J Am Chem Soc 2016; 138:3904-11. [DOI: 10.1021/jacs.6b00800] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takuya Yamamoto
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152−8552, Japan
- Division
of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060−8628, Japan
| | - Sakyo Yagyu
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152−8552, Japan
| | - Yasuyuki Tezuka
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152−8552, Japan
| |
Collapse
|
25
|
Gambino T, Martínez de Ilarduya A, Alegría A, Barroso-Bujans F. Dielectric Relaxations in Poly(glycidyl phenyl ether): Effects of Microstructure and Cyclic Topology. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Thomas Gambino
- Materials
Physics Center, Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
| | - Antxon Martínez de Ilarduya
- Departament
d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain
| | - Angel Alegría
- Materials
Physics Center, Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Departamento
de Física de Materiales, Universidad del País Vasco (UPV/EHU). Paseo Manuel de Lardizabal 3, E-20018 San Sebastián, Spain
| | - Fabienne Barroso-Bujans
- Materials
Physics Center, Centro de Física de Materiales (CSIC, UPV/EHU), Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel
de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
26
|
López JV, Pérez-Camargo RA, Zhang B, Grayson SM, Müller AJ. The influence of small amounts of linear polycaprolactone chains on the crystallization of cyclic analogue molecules. RSC Adv 2016. [DOI: 10.1039/c6ra04823d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
C-PCL/L-PCL blends show a synergistic decrease in their isothermal crystallization rates as compared to the expectation of a simple mixing law due to the threading effect of the linear on the cyclic chains.
Collapse
Affiliation(s)
- Juan V. López
- Grupo de Polímeros USB
- Departamento de Ciencia de los Materiales
- Universidad Simón Bolívar
- Caracas 1080-A
- Venezuela
| | - Ricardo A. Pérez-Camargo
- Grupo de Polímeros USB
- Departamento de Ciencia de los Materiales
- Universidad Simón Bolívar
- Caracas 1080-A
- Venezuela
| | - Boyu Zhang
- Department of Chemistry
- Tulane University
- New Orleans
- USA
| | | | - Alejandro J. Müller
- Grupo de Polímeros USB
- Departamento de Ciencia de los Materiales
- Universidad Simón Bolívar
- Caracas 1080-A
- Venezuela
| |
Collapse
|
27
|
Yamamoto T, Tezuka Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. SOFT MATTER 2015; 11:7458-7468. [PMID: 26264187 DOI: 10.1039/c5sm01557j] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A variety of single- and multicyclic polymers having programmed chemical structures with guaranteed purity have now become obtainable owing to a number of synthetic breakthroughs achieved in recent years. Accordingly, a broadening range of studies has been undertaken to gain updated insights on fundamental polymer properties of cyclic polymers in either solution or bulk, in either static or dynamic states, and in self-assemblies, leading to unusual properties and functions of polymer materials based on their cyclic topologies. In this article, we review recent studies aiming to achieve distinctive properties and functions by cyclic polymers unattainable by their linear or branched counterparts. We focus, in particular, on selected examples of unprecedented topology effects of cyclic polymers upon self-assemblies, dynamics and responses, to highlight current progress in Topological Polymer Chemistry.
Collapse
Affiliation(s)
- Takuya Yamamoto
- Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
| | | |
Collapse
|
28
|
Ogawa T, Nakazono K, Aoki D, Uchida S, Takata T. Effective Approach to Cyclic Polymer from Linear Polymer: Synthesis and Transformation of Macromolecular [1]Rotaxane. ACS Macro Lett 2015; 4:343-347. [PMID: 35596318 DOI: 10.1021/acsmacrolett.5b00067] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a convenient and scalable synthesis of cyclic poly(ε-caprolactone) (PCL) from its linear counterpart based on the rotaxane protocol. Cyclic PCL was prepared by ring-opening polymerization of ε-caprolactone (ε-CL) initiated by a pseudo[2]rotaxane initiator in the presence of diphenylphosphate (DPP) as a catalyst, followed by capping of the propagation end by using a bulky isocyanate to afford macromolecular [2]rotaxane. The successive intramolecular cyclization to macromolecular [1]rotaxane at the polymer terminus proceeded with good yield. The attractive interaction of the terminal ammonium/crown ether moiety was removed via N-acetylation. This enabled movement of the crown ether wheel along the axle PCL chain to the urethane region of the other terminus in solution state. Size-exclusion chromatography and 2D diffusion-ordered spectroscopy (DOSY) results demonstrated the formation of cyclic PCL from linear PCL, which is further supported by thermal property or crystallinity change before and after transformation.
Collapse
Affiliation(s)
- Takahiro Ogawa
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Kazuko Nakazono
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Daisuke Aoki
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Satoshi Uchida
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| | - Toshikazu Takata
- Department of Organic and
Polymeric Materials, Tokyo Institute of Technology, 2-12-1, Ookayama,
Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
29
|
Wang J, Li Z, Pérez RA, Müller AJ, Zhang B, Grayson SM, Hu W. Comparing crystallization rates between linear and cyclic poly(epsilon-caprolactones) via fast-scan chip-calorimeter measurements. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.02.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sugai N, Asai S, Tezuka Y, Yamamoto T. Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym Chem 2015. [DOI: 10.1039/c5py00158g] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new methodology for a stimuli-responsive polymer was proposed on the basis of cyclization and photocleavage. This requires only a single reaction per polymer molecule.
Collapse
Affiliation(s)
- Naoto Sugai
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Shigeo Asai
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Takuya Yamamoto
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
31
|
Ogawa T, Usuki N, Nakazono K, Koyama Y, Takata T. Linear–cyclic polymer structural transformation and its reversible control using a rational rotaxane strategy. Chem Commun (Camb) 2015; 51:5606-9. [DOI: 10.1039/c4cc08982k] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for “polymer structural transformation” was developed. One [1]rotaxane unit was introduced at the chain end of a linear polymer and the wheel component position was defined by controlling the attractive interaction between the polymer ends. Thus, the reversible linear–cyclic structural transformation was demonstrated.
Collapse
Affiliation(s)
- Takahiro Ogawa
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Naoya Usuki
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Kazuko Nakazono
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Yasuhito Koyama
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| | - Toshikazu Takata
- Department of Organic and Polymeric Materials
- Tokyo Institute of Technology
- Tokyo 152-8552
- Japan
| |
Collapse
|
32
|
|
33
|
Pérez R, Córdova M, López J, Hoskins J, Zhang B, Grayson S, Müller A. Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2013.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Sreerama SG, Elupula R, Laurent BA, Zhang B, Grayson SM. Use of MALDI-ToF MS to elucidate the structure of oligomeric impurities formed during ‘click’ cyclization of polystyrene. REACT FUNCT POLYM 2014. [DOI: 10.1016/j.reactfunctpolym.2014.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Pérez RA, López JV, Hoskins JN, Zhang B, Grayson SM, Casas MT, Puiggalí J, Müller AJ. Nucleation and Antinucleation Effects of Functionalized Carbon Nanotubes on Cyclic and Linear Poly(ε-caprolactones). Macromolecules 2014. [DOI: 10.1021/ma5005869] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ricardo A. Pérez
- Grupo
de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Juan V. López
- Grupo
de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Jessica N. Hoskins
- Department
of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - Boyu Zhang
- Department
of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - María Teresa Casas
- Departament
d́Enginyería Química, Universitat Politécnica de Catanluya, Av. Diagonal 647, Barcelona E-08028, Spain
| | - Jordi Puiggalí
- Departament
d́Enginyería Química, Universitat Politécnica de Catanluya, Av. Diagonal 647, Barcelona E-08028, Spain
| | - Alejandro J. Müller
- Grupo
de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
- Institute
for Polymer Materials (POLYMAT) and Polymer Science and Technology
Department, Faculty of Chemistry, University of the Basque Country (UPV-EHU), Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE,
Basque
Foundation for Science, E-48011 Bilbao, Spain
| |
Collapse
|
36
|
|
37
|
Hatakeyama F, Yamamoto T, Tezuka Y. Systematic Synthesis of Block Copolymers Consisting of Topological Amphiphilic Segment Pairs from kyklo- and kentro-Telechelic PEO and Poly(THF). ACS Macro Lett 2013; 2:427-431. [PMID: 35581851 DOI: 10.1021/mz400150m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A set of four types of block copolymers consisting of topological amphiphilic segment pairs was effectively synthesized via kyklo- (functionalized cyclic) and kentro- (center-functionalized linear) telechelic poly(ethylene oxide) (PEO) and poly(tetrahydrofuran) (poly(THF)). Accordingly, kyklo- and kentro-telechelic PEO with an ethynyl group was newly prepared from relevant linear PEO precursors with quinuclidinium end groups and an ethynyl-functionalized dicarboxylate counteranion by the electrostatic self-assembly and covalent fixation (ESA-CF) process. Similarly, kyklo- and kentro-telechelic poly(THF) with an azido group was obtained. The PEO and poly(THF) telechelics were subjected to click chemistry to systematically produce amphiphilic block copolymers with two symmetric topological forms, that is, an "8" shape (IC·IIC) and a four-armed star shape (IL·IIL), and two asymmetric topological forms, that is, twin-tailed tadpole shapes (IL·IIC and IC·IIL) with respect to the hydrophilic-hydrophobic plane.
Collapse
Affiliation(s)
- Fumiya Hatakeyama
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama,
Meguro-ku, Tokyo 152−8552, Japan
| | - Takuya Yamamoto
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama,
Meguro-ku, Tokyo 152−8552, Japan
| | - Yasuyuki Tezuka
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama,
Meguro-ku, Tokyo 152−8552, Japan
| |
Collapse
|
38
|
|
39
|
Synthesis of Cyclic Polymers via Ring Closure. HIERARCHICAL MACROMOLECULAR STRUCTURES: 60 YEARS AFTER THE STAUDINGER NOBEL PRIZE II 2013. [DOI: 10.1007/12_2013_238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Su HH, Chen HL, Díaz A, Casas MT, Puiggalí J, Hoskins JN, Grayson SM, Pérez RA, Müller AJ. New insights on the crystallization and melting of cyclic PCL chains on the basis of a modified Thomson–Gibbs equation. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.11.066] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Takeshita H, Poovarodom M, Kiya T, Arai F, Takenaka K, Miya M, Shiomi T. Crystallization behavior and chain folding manner of cyclic, star and linear poly(tetrahydrofuran)s. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Kawaguchi D, Ohta Y, Takano A, Matsushita Y. Temperature and Molecular Weight Dependence of Mutual Diffusion Coefficient of Cyclic Polystyrene/Cyclic Deuterated Polystyrene Bilayer Films. Macromolecules 2012. [DOI: 10.1021/ma3006872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daisuke Kawaguchi
- Department
of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yutaka Ohta
- Department
of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Atsushi Takano
- Department
of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yushu Matsushita
- Department
of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
43
|
Fan X, Huang B, Wang G, Huang J. Synthesis of Amphiphilic Heteroeight-Shaped Polymer Cyclic-[Poly(ethylene oxide)-b-polystyrene]2 via “Click” Chemistry. Macromolecules 2012. [DOI: 10.1021/ma300487x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaoshan Fan
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| | - Bing Huang
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| | - Guowei Wang
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| | - Junlian Huang
- State Key Laboratory of Molecular
Engineering of Polymer, Department of Macromolecular Science, Fudan University, Shanghai 20043, China
| |
Collapse
|
44
|
|
45
|
KAWAGUCHI D. Mutual Diffusion and Relaxation at Polymer/Polymer Interfaces. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Shin EJ, Jones AE, Waymouth RM. Stereocomplexation in Cyclic and Linear Polylactide Blends. Macromolecules 2011. [DOI: 10.1021/ma202184j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Eun Ji Shin
- Department
of Chemistry, Stanford University, Stanford,
California 94305, United States
| | - Alexandra E. Jones
- Department
of Chemistry, Stanford University, Stanford,
California 94305, United States
| | - Robert M. Waymouth
- Department
of Chemistry, Stanford University, Stanford,
California 94305, United States
| |
Collapse
|
47
|
Córdova ME, Lorenzo AT, Müller AJ, Hoskins JN, Grayson SM. A Comparative Study on the Crystallization Behavior of Analogous Linear and Cyclic Poly(ε-caprolactones). Macromolecules 2011. [DOI: 10.1021/ma200394h] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel E. Córdova
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Arnaldo T. Lorenzo
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Alejandro J. Müller
- Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad Simón Bolívar, Apartado 89000, Caracas 1080-A, Venezuela
| | - Jessica N. Hoskins
- Department of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department of Chemistry, Tulane University, 6400 Freret St., New Orleans, Louisiana 70118, United States
| |
Collapse
|
48
|
Shin EJ, Jeong W, Brown HA, Koo BJ, Hedrick JL, Waymouth RM. Crystallization of Cyclic Polymers: Synthesis and Crystallization Behavior of High Molecular Weight Cyclic Poly(ε-caprolactone)s. Macromolecules 2011. [DOI: 10.1021/ma102970m] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eun Ji Shin
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wonhee Jeong
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hayley A. Brown
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bon Jun Koo
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, California 95120, United States
| | - Robert M. Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
49
|
Yamamoto T, Tezuka Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym Chem 2011. [DOI: 10.1039/c1py00088h] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
KITAHARA T, YAMAZAKI S, KIMURA K. Effects of Topological Constraint and Knot Entanglement on the Crystal Growth of Polymers Proved by Growth Rate of Spherulite of Cyclic Polyethylene. KOBUNSHI RONBUNSHU 2011. [DOI: 10.1295/koron.68.694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|