1
|
In Situ SERS Sensing by a Laser-Induced Aggregation of Silver Nanoparticles Templated on a Thermoresponsive Polymer. BIOSENSORS 2022; 12:bios12080628. [PMID: 36005026 PMCID: PMC9405980 DOI: 10.3390/bios12080628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
A stimuli-responsive (pH- and thermoresponsive) micelle-forming diblock copolymer, poly(1,2-butadiene)290-block-poly(N,N-dimethylaminoethyl methacrylate)240 (PB-b-PDMAEMA), was used as a polymer template for the in situ synthesis of silver nanoparticles (AgNPs) through Ag+ complexation with PDMAEMA blocks, followed by the reduction of the bound Ag+ with sodium borohydride. A successful synthesis of the AgNPs on a PB-b-PDMAEMA micellar template was confirmed by means of UV–Vis spectroscopy and transmission electron microscopy, wherein the shape and size of the AgNPs were determined. A phase transition of the polymer matrix in the AgNPs/PB-b-PDMAEMA metallopolymer hybrids, which results from a collapse and aggregation of PDMAEMA blocks, was manifested by changes in the transmittance of their aqueous solutions as a function of temperature. A SERS reporting probe, 4-mercaptophenylboronic acid (4-MPBA), was used to demonstrate a laser-induced enhancement of the SERS signal observed under constant laser irradiation. The local heating of the AgNPs/PB-b-PDMAEMA sample in the laser spot is thought to be responsible for the triggered SERS effect, which is caused by the approaching of AgNPs and the generation of “hot spots” under a thermo-induced collapse and the aggregation of the PDMAEMA blocks of the polymer matrix. The triggered SERS effect depends on the time of a laser exposure and on the concentration of 4-MPBA. Possible mechanisms of the laser-induced heating for the AgNPs/PB-b-PDMAEMA metallopolymer hybrids are discussed.
Collapse
|
2
|
Diehl F, Hageneder S, Fossati S, Auer SK, Dostalek J, Jonas U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem Soc Rev 2022; 51:3926-3963. [PMID: 35471654 PMCID: PMC9126188 DOI: 10.1039/d1cs01083b] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Plasmonic nanomaterials have become an integral part of numerous technologies, where they provide important functionalities spanning from extraction and harvesting of light in thin film optical devices to probing of molecular species and their interactions on biochip surfaces. More recently, we witness increasing research efforts devoted to a new class of plasmonic nanomaterials that allow for on-demand tuning of their properties by combining metallic nanostructures and responsive hydrogels. This review addresses this recently emerged vibrant field, which holds potential to expand the spectrum of possible applications and deliver functions that cannot be achieved by separate research in each of the respective fields. It aims at providing an overview of key principles, design rules, and current implementations of both responsive hydrogels and metallic nanostructures. We discuss important aspects that capitalize on the combination of responsive polymer networks with plasmonic nanostructures to perform rapid mechanical actuation and actively controlled nanoscale confinement of light associated with resonant amplification of its intensity. The latest advances towards the implementation of such responsive plasmonic nanomaterials are presented, particularly covering the field of plasmonic biosensing that utilizes refractometric measurements as well as plasmon-enhanced optical spectroscopy readout, optically driven miniature soft actuators, and light-fueled micromachines operating in an environment resembling biological systems.
Collapse
Affiliation(s)
- Fiona Diehl
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| | - Simone Hageneder
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Stefan Fossati
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Simone K Auer
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- CEST Competence Center for Electrochemical Surface Technologies, 3430 Tulln an der Donau, Austria
| | - Jakub Dostalek
- Biosensor Technologies, AIT-Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
- FZU-Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 21, Czech Republic
| | - Ulrich Jonas
- Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf Reichwein-Straße 2, 57074 Siegen, Germany.
| |
Collapse
|
3
|
Ding T, Baumberg JJ. Thermo-responsive plasmonic systems: old materials with new applications. NANOSCALE ADVANCES 2020; 2:1410-1416. [PMID: 36132316 PMCID: PMC9418901 DOI: 10.1039/c9na00800d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/11/2020] [Indexed: 05/12/2023]
Abstract
Thermo-responsive plasmonic systems of gold and poly(N-isopropylacrylamide) have been actively studied for several decades but this system keeps reinventing itself, with new concepts and applications which seed new fields. In this minireview, we show the latest few years development and applications of this intriguing system. We start from the basic working principles of this puzzling system which shows different plasmon shifts for even slightly different chemistries. We then present its applications to colloidal actuation, plasmon/meta-film tuning, and bioimaging and sensing. Finally we briefly summarize and propose several promising applications of the ongoing effort in this field.
Collapse
Affiliation(s)
- Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge Cambridge CB3 0HE UK
| |
Collapse
|
4
|
Tzounis L, Doña M, Lopez-Romero JM, Fery A, Contreras-Caceres R. Temperature-Controlled Catalysis by Core-Shell-Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29360-29372. [PMID: 31329406 DOI: 10.1021/acsami.9b10773] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A novel wet-chemical protocol is reported for the synthesis of "temperature-programmable" catalytic colloids consisting of bimetallic core@shell AuAg nanoparticles encapsulated into poly(N-isopropylacrylamide) (pNIPAM) microgels with silver satellites (AgSTs) incorporated within the microgel structure. Spherical AuNPs of 50 nm in diameter are initially synthesized and used for growing a pNIPAM microgel shell with temperature stimulus response. A silver shell is subsequently grown on the Au core by diffusing Ag salt through the hydrophilic pNIPAM microgel (AuAg@pNIPAM microgel). The use of allylamine as a co-monomer during pNIPAM polymerization facilitates the coordination of Ag+ with the NH2 nitrogen lone pair of electrons, which are reduced to Ag seeds (∼14 nm) using a strong reducing agent, obtaining thus AuAg@pNIPAM@Ag hybrid microgels. The two systems are tested as catalysts toward the reduction of 4-nitrophenol (4-Nip) to 4-aminophenol (4-Amp) by NaBH4. Both exhibit extremely sensitive temperature-dependent reaction rate constants, with the highest K1 value of the order of 0.6 L/m2 s, which is one of the highest values ever reported. The presence of plasmonic entities is confirmed by UV-vis spectroscopy. Dynamic light scattering proves the temperature responsiveness in all cases. Transmission electron microscopy and energy-dispersive X-ray (EDX) elemental mapping highlight the monodispersity of the synthesized hybrid nanostructured microgels, as well as their size and metallic composition. The amount of gold and silver in both systems is obtained by thermogravimetric analysis and the EDX spectrum. The reduction reaction kinetics is monitored by UV-vis spectroscopy at different temperatures for both catalytic systems, with the AuAg@pNIPAM@Ag microgels showing superior catalytic performance at all temperatures because of the synergistic effect of the AuAg core and the AgSTs. The principal novelty of this study lies in the "hierarchical" design of the metal-polymer-metal core@shell@satellite nanostructured colloids exhibiting synergistic capabilities of the plasmonic NPs for, among others, temperature-controlled catalytic applications.
Collapse
Affiliation(s)
- Lazaros Tzounis
- Department of Materials Science & Engineering , University of Ioannina , GR-45110 Ioannina , Greece
- Printed Electronic Devices of Things P.C. (PDoT) , Makrinitsis 122 , GR-38333 Volos , Greece
| | - Manuel Doña
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Juan Manuel Lopez-Romero
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
- Physical Chemistry of Polymeric Materials , Technische Universität Dresden , 01069 Dresden , Germany
- Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed) , Technische Universität Dresden , 01062 Dresden , Germany
| | - Rafael Contreras-Caceres
- Departamento de Química Orgánica, Facultad de Ciencias , Universidad de Málaga , 29071 Málaga , Spain
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy , Complutense University of Madrid , Plaza Ramon y Cajal , 28040 Madrid , Spain
| |
Collapse
|
5
|
Chen H, Wang Y, Li X, Liang B, Dong S, You T, Yin P. A CO 2-tunable plasmonic nanosensor based on the interfacial assembly of gold nanoparticles on diblock copolymers grafted from gold surfaces. RSC Adv 2018; 8:22177-22181. [PMID: 35541733 PMCID: PMC9081106 DOI: 10.1039/c8ra02934b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
A general stepwise strategy for the fabrication of CO2-tunable plasmonic nanosensors was described for the first time, based on gold surface functionalization by CO2-responsive poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) brushes via a surface-initiated atom transfer radical polymerization (SI-ATRP) method, then the extremity of PDEAEMA was functionalized by linking the polyacrylamide (PAAm) brushes via ATRP, where they were assembled with gold nanoparticles (AuNPs) efficiently by altering the deposition time. The swelling-shrinking states of the PDEAEMA brushes can be tuned just by passing CO2 and N2 through a solution alternately. The unique plasmonic surface-enhanced Raman scattering (SERS) sensing properties of these stimulable substrates were investigated using 4-mercaptophenol (4MPh) as a molecular probe. When alternating CO2 and N2 bubbling in the water solution, the reversible switching of the SERS signals was complete. By in situ contact-mode atomic force microscopy, the thickness of the polymer layer was observed to be 26 nm in CO2 saturated water, and after N2 bubbling to remove CO2 it decreased to 15 nm, causing the AuNPs to move near to the gold surface. Meanwhile, the distance between the nearby AuNPs becomes smaller, and the surface coverage (φ) of the AuNPs increased from 27% to 35%. The reported CO2-responsive plasmonic nanosensor provided a dynamic SERS platform, with reversible regulation for electromagnetic coupling between the AuNPs and the gold surface, and between nearby AuNPs.
Collapse
Affiliation(s)
- Huaxiang Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 China
| | - Yuliang Wang
- School of Mechanical Engineering and Automation, Beihang University Beijing 100191 China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University Beijing 100083 China
| | - Xiaolai Li
- School of Mechanical Engineering and Automation, Beihang University Beijing 100191 China
| | - Benliang Liang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 China
| | - Shaohua Dong
- Pipeline Technology Research Center, China University of Petroleum-Beijing Beijing 102249 China
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University Beijing 100191 China
| |
Collapse
|
6
|
Watanabe K, Tanaka E, Ishii H, Nagao D. The plasmonic properties of gold nanoparticle clusters formed via applying an AC electric field. SOFT MATTER 2018; 14:3372-3377. [PMID: 29620115 DOI: 10.1039/c8sm00097b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An external electric AC field with a field strength ranging from 10 V mm-1 to 30 V mm-1 and a frequency ranging from 0.1 kHz to 1 MHz was applied to suspensions of gold nanoparticles (Au NPs) to control their plasmonic properties. Apparent differences in the UV-vis spectra of the Au NPs were observed between the spectra with and without the field application. The characteristic red color of the Au NP suspension darkened; this suggested that the application of the AC field caused the aggregation of the Au NPs. In addition, the sizes of the Au NP clusters in suspension formed by the AC field application depended on the frequency of the applied field. The surface-enhanced Raman scattering (SERS) effects of Au NP clusters were examined by comparing the difference in Raman intensities obtained at 30 V mm-1 and in a frequency range of 0.1 kHz to 1 MHz. The application of a low-frequency field at 0.1 kHz caused a rapid aggregation of the Au NPs, resulting in low Raman intensities of the probe molecules. Conversely, high-frequency applications between 1 kHz and 1 MHz successfully enhanced the Raman intensities of the molecules in suspension. The strong correlation of the optical/sensing properties with the Au NP clustering states reveals that the application of an AC electric field is a powerful tool for control over the plasmonic properties.
Collapse
Affiliation(s)
- K Watanabe
- Department of Chemical Engineering, Tohoku University, 6-6-07 Aoba, Aramaki-aza Aoba-ku, Sendai, 980-8579, Japan.
| | | | | | | |
Collapse
|
7
|
Qiu L, Zhao L, Xing C, Zhan Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.09.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Han F, Soeriyadi AH, Vivekchand SRC, Gooding JJ. Simple Method for Tuning the Optical Properties of Thermoresponsive Plasmonic Nanogels. ACS Macro Lett 2016; 5:626-630. [PMID: 35632384 DOI: 10.1021/acsmacrolett.6b00222] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report a straightforward way for forming and tuning the optical properties of thermally responsive plasmonic nanogels. Upon functionalization, a small red shift (2-3 nm) of the pNIPAM@AuNPs was observed due to changes in the refractive index surrounding the AuNP. By adding thermoresponsive poly-N-isopropylacrylamide (pNIPAM) into the pNIPAM@AuNP, its optical response was significantly increased. Heating the nanogel such that the pNIPAM collapsed and acted as a cross-link resulted in the aggregation of the AuNPs. The plasmonic response with red shifts of up to 20 nm was observed. The enlarged red shift was due to the increase in the dielectric constant around the particles and the interparticle interaction of the AuNPs. The interparticle interaction also leads to the broadening of the spectra. Experimental data and finite-difference time-domain (FDTD) calculation are in agreement with this observation. The temperature-dependent optical properties were reversible through multiple cycles of heating and cooling.
Collapse
Affiliation(s)
- Fei Han
- School of Chemistry, ‡Australian Centre for NanoMedicine, and §ARC Center of Excellence
in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Alexander H. Soeriyadi
- School of Chemistry, ‡Australian Centre for NanoMedicine, and §ARC Center of Excellence
in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - S. R. C. Vivekchand
- School of Chemistry, ‡Australian Centre for NanoMedicine, and §ARC Center of Excellence
in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, ‡Australian Centre for NanoMedicine, and §ARC Center of Excellence
in Convergent
Bio-Nano Science and Technology, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Amphiphilic polymer-Ag composite microgels with tunable catalytic activity and selectivity. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3642-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Wang L, Zhao X, Zhang Y, Zhang W, Ren T, Chen Z, Wang F, Yang H. Fabrication of intelligent poly(N-isopropylacrylamide)/silver nanoparticle composite films with dynamic surface-enhanced Raman scattering effect. RSC Adv 2015. [DOI: 10.1039/c5ra04361a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An intelligent PNIPAAm/AgNP composite film with dynamic SERS effect was fabricated by the simple assembly of silver nanoparticles on the surface of photo-polymerized PNIPAAm film via electrostatic interaction.
Collapse
Affiliation(s)
- Lin Wang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Xiaomei Zhao
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Yan Zhang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Wenqi Zhang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Tianrui Ren
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Zhihong Chen
- College of Information
- Mechanical and Electrical engineering
- Shanghai Normal University
- Shanghai
- P. R. China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry
- Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors
- Department of Chemistry
- Shanghai Normal University
| |
Collapse
|
11
|
Kearns H, Shand NC, Faulds K, Graham D. Laser induced SERS switching using plasmonic heating of PNIPAM coated HGNs. Chem Commun (Camb) 2015; 51:8138-41. [PMID: 25873474 DOI: 10.1039/c5cc01429h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Laser induced plasmonic heating of PNIPAM coated HGNs turning ‘on and off’ the SERS enhancement.
Collapse
Affiliation(s)
- H. Kearns
- Centre for Molecular Nanometrology
- West CHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
| | | | - K. Faulds
- Centre for Molecular Nanometrology
- West CHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
| | - D. Graham
- Centre for Molecular Nanometrology
- West CHEM
- Department of Pure and Applied Chemistry
- University of Strathclyde
- Glasgow
| |
Collapse
|
12
|
Wu Y, He S, Guo Z, Feng Y. Preparation and stabilization of silver nanoparticles by a thermo-responsive pentablock terpolymer. POLYMER SCIENCE SERIES B 2013. [DOI: 10.1134/s1560090413130058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Silver deposited polystyrene (PS) microspheres for surface-enhanced Raman spectroscopic-encoding and rapid label-free detection of melamine in milk powder. Talanta 2013; 113:7-13. [DOI: 10.1016/j.talanta.2013.03.075] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/15/2013] [Accepted: 03/28/2013] [Indexed: 11/21/2022]
|
14
|
Tailoring surface structure of polymer nanospheres in Pickering emulsion polymerization. J Colloid Interface Sci 2013; 401:80-7. [DOI: 10.1016/j.jcis.2013.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 11/18/2022]
|
15
|
Liu X, Zhang C, Yang J, Lin D, Zhang L, Chen X, Zha L. Silver nanoparticles loading pH responsive hybrid microgels: pH tunable plasmonic coupling demonstrated by surface enhanced Raman scattering. RSC Adv 2013. [DOI: 10.1039/c3ra22742a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Near R, Tabor C, Duan J, Pachter R, El-Sayed M. Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography. NANO LETTERS 2012; 12:2158-2164. [PMID: 22448778 DOI: 10.1021/nl300622p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gold nanoring dimers were fabricated via EBL with dimensions of 127.6 ± 2.5 and 57.8 ± 2.3 nm for the outer and inner diameters, respectively, with interparticle separations ranging from 17.8 ± 3.4 to 239.2 ± 3.7 nm. The coupling between the inner and outer surfaces of a single nanoring renders it very sensitive to any anisotropy. We found that anisotropy in the particle geometry and anisotropy introduced by the substrate combine to create very unique spectral features in this system.
Collapse
Affiliation(s)
- Rachel Near
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
17
|
Alvarez-Puebla RA, Liz-Marzán LM. Traps and cages for universal SERS detection. Chem Soc Rev 2012; 41:43-51. [DOI: 10.1039/c1cs15155j] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|