1
|
Desgranges A, D'Agosto F, Boisson C. Rare-Earth Metallocenes for Polymerization of Olefins and Conjugated Dienes: From Fundamental Studies to Olefin Block Copolymers. Chempluschem 2024; 89:e202400262. [PMID: 38853764 DOI: 10.1002/cplu.202400262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The various steps in the mechanism of olefin polymerizations mediated by neutral rare-earth metallocene complexes are discussed. The complexes are either trivalent hydride and alkyl rare-earth compounds or divalent metallocenes that are activated by the monomer via an oxidation step. The stereospecific polymerizations of conjugated dienes based on the association of a cationic metallocene complex and an alkylaluminum and the polymerization mechanism based on monomer insertion into an aluminum-carbon bond are also discussed. The exploitation of metallocene complexes for the copolymerization of olefins with conjugated dienes is the subject of a third part of this review. The synthesis of new elastomers called ethylene butadiene rubber (EBR) is highlighted. Finally, the use of rare-earth metallocenes in macromolecular engineering is detailed. This includes the synthesis of functional polyolefins and block copolymers including thermoplastic elastomers.
Collapse
Affiliation(s)
- Ariane Desgranges
- CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Universite Claude Bernard Lyon 1, 69616, Villeurbanne, France
- ChemistLab, Michelin CP2 M ICBMS joint Laboratory, 69616, Villeurbanne, France
- Manufacture des Pneumatiques Michelin, 23 place Carmes Déchaux, 63000, Clermont-Ferrand, France
| | - Franck D'Agosto
- CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Universite Claude Bernard Lyon 1, 69616, Villeurbanne, France
- ChemistLab, Michelin CP2 M ICBMS joint Laboratory, 69616, Villeurbanne, France
| | - Christophe Boisson
- CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Universite Claude Bernard Lyon 1, 69616, Villeurbanne, France
- ChemistLab, Michelin CP2 M ICBMS joint Laboratory, 69616, Villeurbanne, France
| |
Collapse
|
2
|
Mundil R, Bravo C, Merle N, Zinck P. Coordinative Chain Transfer and Chain Shuttling Polymerization. Chem Rev 2024; 124:210-244. [PMID: 38085864 DOI: 10.1021/acs.chemrev.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Coordinative chain transfer polymerization, CCTP, is a degenerative chain transfer polymerization process that has a wide range of applications. It allows a highly controlled synthesis of polyolefins, stereoregular polydienes, and stereoregular polystyrene, including (stereo)block as well as statistical copolymers thereof. It also shows a green character by allowing catalyst economy during the synthesis of such polymers. CCTP notably allows the end functionalization of both the commodity and stereoregular specialty polymers aforementionned, control of the composition of statistical copolymers without adjusting the feed, and quantitative formation of 1-alkenes from ethene. A one-pot one-step synthesis of the original multiblock microstructures and architectures by chain shuttling polymerization (CSP) is also an asset of CCTP. This methodology takes advantage of the simultaneous presence of two catalysts of different selectivity toward comonomers that produce blocks of different composition/microstructure, while still allowing the chain transfer. This affords the production of highly performant functional polymers, such as thermoplastic elastomers and adhesives, among others. This approach has been extended to cyclic esters' and ethers' ring-opening polymerization, providing new types of multiblock microstructure. The present Review provides the state of the art in the field with a focus on the last 10 years.
Collapse
Affiliation(s)
- Robert Mundil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova, 2030, 128 40 Prague 2, Czech Republic
| | - Catarina Bravo
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Nicolas Merle
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| |
Collapse
|
3
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Li YL, Song DP, Pan L, Ma Z, Li YS. Facile functionalization of isotactic polypropylene via click chemistry. Polym Chem 2019. [DOI: 10.1039/c9py01225g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkynyl functionalized iPP, with 1–4 mol% comonomer incorporation, can be efficiently synthesized and conveniently converted into various functional iPPs and graft copolymers via alkynyl/N3 reaction.
Collapse
Affiliation(s)
- Yu-Lian Li
- Tianjin Key Lab Composite & Functional Materials
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Dong-Po Song
- Tianjin Key Lab Composite & Functional Materials
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Li Pan
- Tianjin Key Lab Composite & Functional Materials
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Zhe Ma
- Tianjin Key Lab Composite & Functional Materials
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Yue-Sheng Li
- Tianjin Key Lab Composite & Functional Materials
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300350
- P. R. China
| |
Collapse
|
5
|
Arslan M, Tasdelen MA. Click Chemistry in Macromolecular Design: Complex Architectures from Functional Polymers. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s42250-018-0030-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Offenloch JT, Norsic S, Mutlu H, Taam M, Boyron O, Boisson C, D'Agosto F, Barner-Kowollik C. Light induced polyethylene ligation. Polym Chem 2018. [DOI: 10.1039/c8py00717a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a photoreactive polyethylene (PE) derivative, which upon light irradiation (λmax = 365 nm) can effectively react to form well-defined block copolymers with polystyrene and poly(methyl methacrylate).
Collapse
Affiliation(s)
- Janin T. Offenloch
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Sébastien Norsic
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Hatice Mutlu
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| | - Manel Taam
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Olivier Boyron
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Christophe Boisson
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Franck D'Agosto
- Université de Lyon
- Université Lyon 1
- CPE Lyon
- CNRS UMR 5265
- 69616 Villeurbanne CEDEX
| | - Christopher Barner-Kowollik
- Macromolecular Architectures
- Institut für Technische Chemie und Polymerchemie
- Karlsruhe Institute of Technology (KIT)
- 76128 Karlsruhe
- Germany
| |
Collapse
|
7
|
Kötteritzsch J, Geitner R, Ahner J, Abend M, Zechel S, Vitz J, Hoeppener S, Dietzek B, Schmitt M, Popp J, Schubert US, Hager MD. Remendable polymers via reversible Diels-Alder cycloaddition of anthracene-containing copolymers with fullerenes. J Appl Polym Sci 2017. [DOI: 10.1002/app.45916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Kötteritzsch
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Robert Geitner
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4, Jena, 07743 Germany
| | - Johannes Ahner
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Marcus Abend
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Stefan Zechel
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Jürgen Vitz
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Stephanie Hoeppener
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Benjamin Dietzek
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4, Jena, 07743 Germany
- Leibniz Institute for Photonic Technology (IPHT) Jena; Albert-Einstein-Str. 9, Jena, 07745 Germany
| | - Michael Schmitt
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4, Jena, 07743 Germany
| | - Jürgen Popp
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
- Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena; Helmholtzweg 4, Jena, 07743 Germany
- Leibniz Institute for Photonic Technology (IPHT) Jena; Albert-Einstein-Str. 9, Jena, 07745 Germany
| | - Ulrich S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| | - Martin D. Hager
- Laboratory for Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10, Jena, 07743 Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena; Philosophenweg 7, Jena, 07743 Germany
| |
Collapse
|
8
|
Nzahou Ottou W, Norsic S, Belaid I, Boisson C, D’Agosto F. Amino End-Functionalized Polyethylenes and Corresponding Telechelics by Coordinative Chain Transfer Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Winnie Nzahou Ottou
- Laboratoire Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, CNRS UMR 5265, Université de Lyon, Univ. Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Sébastien Norsic
- Laboratoire Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, CNRS UMR 5265, Université de Lyon, Univ. Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Islem Belaid
- Laboratoire Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, CNRS UMR 5265, Université de Lyon, Univ. Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Christophe Boisson
- Laboratoire Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, CNRS UMR 5265, Université de Lyon, Univ. Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Franck D’Agosto
- Laboratoire Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, CNRS UMR 5265, Université de Lyon, Univ. Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
9
|
Zhang D, Pan L, Li Y, Wang B, Li Y. Synthesis and Reaction of Anthracene-Containing Polypropylene: A Promising Strategy for Facile, Efficient Functionalization of Isotactic Polypropylene. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02550] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Deguang Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Chinese
Academy of Sciences, Changchun Branch, Changchun 130022, China
| | - Li Pan
- Tianjin
Key Lab of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanguo Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Bin Wang
- Tianjin
Key Lab of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuesheng Li
- Tianjin
Key Lab of Composite and Functional Materials, School of Materials
Science and Engineering, Tianjin University, Tianjin 300072, China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
10
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
11
|
|
12
|
Abstract
Synthetic polymer chemistry has undergone two major developments in the last two decades. About 20 years ago, reversible-deactivation radical polymerization processes started to give access to a wide range of polymeric architectures made from an almost infinite reservoir of functional building blocks. A few years later, the concept of click chemistry revolutionized the way polymer chemists approached synthetic routes. Among the few reactions that could qualify as click, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) initially stood out. Soon, many old and new reactions, including cycloadditions, would further enrich the synthetic macromolecular chemistry toolbox. Whether click or not, cycloadditions are in any case powerful tools for designing polymeric materials in a modular fashion, with a high level of functionality and, sometimes, responsiveness. Here, we wish to describe cycloaddition methodologies that have been reported in the last 10 years in the context of macromolecular engineering, with a focus on those developed in our laboratories. The overarching structure of this Account is based on the three most commonly encountered cycloaddition subclasses in organic and macromolecular chemistry: 1,3-dipolar cycloadditions, (hetero-)Diels-Alder cycloadditions ((H)DAC), and [2+2] cycloadditions. Our goal is to briefly describe the relevant reaction conditions, the advantages and disadvantages, and the realized polymer applications. Furthermore, the orthogonality of most of these reactions is highlighted because it has proven highly beneficial for generating unique, multifunctional polymers in a one-pot reaction. The overview on 1,3-dipolar cycloadditions is mostly centered on the application of CuAAC as the most travelled route, by far. Besides illustrating the capacity of CuAAC to generate complex polymeric architectures, alternative 1,3-dipolar cycloadditions operating without the need for a catalyst are described. In the area of (H)DA cycloadditions, beyond the popular maleimide/furan couple, we present chemistries based on more reactive species, such as cyclopentadienyl or thiocarbonylthio moieties, particularly stressing the reversibility of these systems. In these two greater families, as well as in the last section on [2+2] cycloadditions, we highlight phototriggered chemistries as a powerful tool for spatially and temporally controlled materials synthesis. Clearly, cycloaddition chemistry already has and will continue to transform the field of polymer chemistry in the years to come. Applying this chemistry enables better control over polymer composition, the development of more complicated polymer architectures, the simplification of polymer library production, and the discovery of novel applications for all of these new polymers.
Collapse
Affiliation(s)
- Guillaume Delaittre
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nathalie K. Guimard
- INM − Leibniz
Institute for New Materials, Functional Surfaces Group, and Saarland
University, Campus D2 2, 66123 Saarbruecken, Germany
| | - Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
13
|
German I, D’Agosto F, Boisson C, Tencé-Girault S, Soulié-Ziakovic C. Microphase Separation and Crystallization in H-Bonding End-Functionalized Polyethylenes. Macromolecules 2015. [DOI: 10.1021/ma502304k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ian German
- CPE
Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, Université de Lyon 1, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Franck D’Agosto
- CPE
Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, Université de Lyon 1, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Christophe Boisson
- CPE
Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères
et Procédés (C2P2), Equipe LCPP Bat 308F, Université de Lyon 1, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Sylvie Tencé-Girault
- Matière
Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, 75005 Paris, France
| | - Corinne Soulié-Ziakovic
- Matière
Molle et Chimie, UMR 7167 CNRS-ESPCI, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
14
|
Li P, Fu Z, Fan Z. Polyethylene-b-poly(ethylene glycol) diblock copolymers: New synthetic strategy and application. J Appl Polym Sci 2015. [DOI: 10.1002/app.42236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peiyuan Li
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Zhisheng Fu
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| | - Zhiqiang Fan
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
15
|
Samoshin AV, Hawker CJ, Read de Alaniz J. Nitrosocarbonyl Hetero-Diels-Alder Cycloaddition: A New Tool for Conjugation. ACS Macro Lett 2014; 3:753-757. [PMID: 35590694 DOI: 10.1021/mz500348y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It is demonstrated that nitrosocarbonyl hetero-Diels-Alder chemistry is an efficient and versatile reaction that can be applied in macromolecular synthesis. Polyethylene glycol functionalized with a hydroxamic acid moiety undergoes facile coupling with cyclopentadiene-terminated polystyrene, through a copper-catalyzed as well as thermal hetero-Diels-Alder reaction. The mild and orthogonal methods used to carry out this reaction make it an attractive method for the synthesis of block copolymers. The resulting block copolymers were analyzed and characterized using GPC and NMR. The product materials could be subjected to thermal retro [4 + 2] cycloaddition, allowing for the liberation of the individual polymer chains and subsequent recycling of the diene-terminated polymers.
Collapse
Affiliation(s)
- Andrey V. Samoshin
- Department of Chemistry and Biochemistry and ‡Materials Department,
Materials Research
Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry and ‡Materials Department,
Materials Research
Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry and ‡Materials Department,
Materials Research
Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Ates Z, Heise A. Functional films from unsaturated poly(macrolactones) by thiol–ene cross-linking and functionalisation. Polym Chem 2014. [DOI: 10.1039/c3py01679j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of cross-linked surface-functional polyester films from natural macrolactones and their subsequent reaction with a fluorescent marker are presented.
Collapse
Affiliation(s)
- Zeliha Ates
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| | - Andreas Heise
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| |
Collapse
|
17
|
Goldmann AS, Glassner M, Inglis AJ, Barner-Kowollik C. Post-Functionalization of Polymers via Orthogonal Ligation Chemistry. Macromol Rapid Commun 2013; 34:810-49. [DOI: 10.1002/marc.201300017] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/17/2022]
|
18
|
German I, Kelhifi W, Norsic S, Boisson C, D'Agosto F. Telechelic Polyethylene from Catalyzed Chain-Growth Polymerization. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
German I, Kelhifi W, Norsic S, Boisson C, D'Agosto F. Telechelic polyethylene from catalyzed chain-growth polymerization. Angew Chem Int Ed Engl 2013; 52:3438-41. [PMID: 23404812 DOI: 10.1002/anie.201208756] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Ian German
- Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F, 43 Bd du 11 novembre 1918, 69616 Villeurbanne, France
| | | | | | | | | |
Collapse
|
20
|
Franssen NMG, Reek JNH, de Bruin B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem Soc Rev 2013; 42:5809-32. [DOI: 10.1039/c3cs60032g] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Guimard NK, Ho J, Brandt J, Lin CY, Namazian M, Mueller JO, Oehlenschlaeger KK, Hilf S, Lederer A, Schmidt FG, Coote ML, Barner-Kowollik C. Harnessing entropy to direct the bonding/debonding of polymer systems based on reversible chemistry. Chem Sci 2013. [DOI: 10.1039/c3sc50642h] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Bian Q, Xiao Y, Lang M. Thermoresponsive biotinylated star amphiphilic block copolymer: Synthesis, self-assembly, and specific target recognition. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.02.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|