1
|
Pan M, Zhao R, Zhao B, Deng J. Two Chirality Transfer Channels Assist Handedness Inversion and Amplification of Circularly Polarized Luminescence in Chiral Helical Polyacetylene Thin Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ming Pan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ran Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Zhao B, Yang S, Deng J, Pan K. Chiral Graphene Hybrid Materials: Structures, Properties, and Chiral Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003681. [PMID: 33854894 PMCID: PMC8025009 DOI: 10.1002/advs.202003681] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Chirality has become an important research subject. The research areas associated with chirality are under substantial development. Meanwhile, graphene is a rapidly growing star material and has hard-wired into diverse disciplines. Rational combination of graphene and chirality undoubtedly creates unprecedented functional materials and may also lead to great findings. This hypothesis has been clearly justified by the sizable number of studies. Unfortunately, there has not been any previous review paper summarizing the scattered studies and advancements on this topic so far. This overview paper attempts to review the progress made in chiral materials developed from graphene and their derivatives, with the hope of providing a systemic knowledge about the construction of chiral graphenes and chiral applications thereof. Recently emerging directions, existing challenges, and future perspectives are also presented. It is hoped this paper will arouse more interest and promote further faster progress in these significant research areas.
Collapse
Affiliation(s)
- Biao Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Shenghua Yang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Kai Pan
- College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
3
|
Huang H, Hu L, Sun Y, Liu Y, Kang Z, MacFarlane DR. Preparation of chiral graphene oxides by covalent attachment of chiral cysteines for voltammetric recognition of tartrates. Mikrochim Acta 2019; 186:298. [PMID: 31025191 DOI: 10.1007/s00604-019-3415-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/05/2019] [Indexed: 12/29/2022]
Abstract
The authors describe the preparation of a chiral graphene oxides (GOs) by covalent attachment of D- or L-cysteine using a one-step hydrothermal method. The resulting chiral functionalized GOs shows circular dichroism with intensities similar to those produced by the cysteines. This indicates that the chirality of cysteines is well preserved in the chiral GOs. The material is reasonably stable at temperatures from 20 to 200 °C and at pH values from 0 to 14. A glassy carbon electrode (GCE) was modified with the chiral GOs and then tested for recognition capability for L- and D-tartrate (0.5 mM). The enantioselectivity of the chiral GOs appears to be the result of a synergistic effect where GO increases the conductivity and cysteine provides the chiral environment. The method is assumed to provide a useful general scheme for development of advanced carbonaceous materials with chiral recognition capabilities. Graphical abstract Chiral graphene oxides produced by covalently attaching chiral amino acids displays effective enantioselective recognition. Graphical abstract contains poor quality of text inside the artwork. Please do not re-use the file that we have rejected or attempt to increase its resolution and re-save. It is originally poor, therefore, increasing the resolution will not solve the quality problem. We suggest that you provide us the original format. We prefer replacement figures containing vector/editable objects rather than embedded images. Preferred file formats are eps, ai, tiff and pdf.We have uploaded the modified version as Graphical abstract.
Collapse
Affiliation(s)
- Hui Huang
- Australian Centre for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| | - Lulu Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yue Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Douglas R MacFarlane
- Australian Centre for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
4
|
Khodadadi Chegeni B, Dadkhah Tehrani A, Adeli M. Glyco-functionalized graphene oxides as green antibacterial absorbent materials. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
|
6
|
Xiao Y, Wang HQ, Zhang H, Jiang ZQ, Wang YQ, Li H, Yin J, Zhu YY, Wu ZQ. Grafting polymerization of single-handed helical poly(phenyl isocyanide)s on graphene oxide and their application in enantioselective separation. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yi Xiao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| | - Hui-Qing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| | - Hao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech); 30 South Puzhu Road Nanjing 211816 China
| | - Zhi-Qiang Jiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| | - Ya-Qi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech); 30 South Puzhu Road Nanjing 211816 China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| | - Yuan-Yuan Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering; Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices; Hefei Anhui Province 230009 China
| |
Collapse
|
7
|
Synergistic interfacial effect of polymer stabilized graphene via non-covalent functionalization in poly(vinylidene fluoride) matrix yielding superior mechanical and electronic properties. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhang H, Zhao B, Deng J. Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes. CHEM REC 2016; 16:964-76. [DOI: 10.1002/tcr.201500298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Huanyu Zhang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
- College of Materials Science and Engineering Beijing University of Chemical Technology; Beijing 100029 P.R. China
- State Key Laboratory of Organic-Inorganic Composites Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
- College of Materials Science and Engineering Beijing University of Chemical Technology; Beijing 100029 P.R. China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 P.R. China
- College of Materials Science and Engineering Beijing University of Chemical Technology; Beijing 100029 P.R. China
| |
Collapse
|
9
|
Li W, Wang B, Yang W, Deng J. Chiral Monolithic Absorbent Constructed by Optically Active Helical-Substituted Polyacetylene and Graphene Oxide: Preparation and Chiral Absorption Capacity. Macromol Rapid Commun 2014; 36:319-26. [DOI: 10.1002/marc.201400546] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/02/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Weifei Li
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Bo Wang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering; Beijing University of Chemical Technology; Beijing 100029 China
- College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing 100029 China
| |
Collapse
|
10
|
Li W, Liang J, Yang W, Deng J. Chiral functionalization of graphene oxide by optically active helical-substituted polyacetylene chains and its application in enantioselective crystallization. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9790-9798. [PMID: 24902050 DOI: 10.1021/am502194b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This article reports an original, versatile strategy to chirally functionalize graphene oxide (GO) with optically active helical-substituted polyacetylene. GO was first converted into alkynyl-GO containing polymerizable -C≡C moieties, which took part in the polymerization of another chiral acetylenic monomer, yielding the expected GO hybrid covalently grafted with chiral helical polyacetylene chains. Transmission electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analyses verified the successful attachment of substituted polyacetylene chains on GO by covalent chemical bonding. Moreover, circular dichroism effects and UV-vis absorption demonstrated that the GO hybrid possessed fascinating optical activity. It also largely improved the dispersibility of GO in tetrahydrofuran. The GO-derived hybrid was further used as a chiral inducer toward enantioselective crystallization of alanine enantiomers. l-Alanine was preferably induced to crystallize, forming rodlike crystals.
Collapse
Affiliation(s)
- Weifei Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | | | | | | |
Collapse
|