1
|
Thalji MR, Ibrahim AA, Chong KF, Soldatov AV, Ali GAM. Glycopolymer-Based Materials: Synthesis, Properties, and Biosensing Applications. Top Curr Chem (Cham) 2022; 380:45. [PMID: 35951265 PMCID: PMC9366760 DOI: 10.1007/s41061-022-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Glycopolymer materials have emerged as a significant biopolymer class that has piqued the scientific community's attention due to their potential applications. Recently, they have been found to be a unique synthetic biomaterial; glycopolymer materials have also been used for various applications, including direct therapeutic methods, medical adhesives, drug/gene delivery systems, and biosensor applications. Therefore, for the next stage of biomaterial research, it is essential to understand current breakthroughs in glycopolymer-based materials research. This review discusses the most widely utilized synthetic methodologies for glycopolymer-based materials, their properties based on structure-function interactions, and the significance of these materials in biosensing applications, among other topics. When creating glycopolymer materials, contemporary polymerization methods allow precise control over molecular weight, molecular weight distribution, chemical activity, and polymer architecture. This review concludes with a discussion of the challenges and complexities of glycopolymer-based biosensors, in addition to their potential applications in the future.
Collapse
Affiliation(s)
- Mohammad R. Thalji
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541 Gyeongbuk South Korea
| | - Amal Amin Ibrahim
- Polymers and pigments department, Chemical industries research institute, National Research Centre, El-Bohouth St, Dokki, Cairo, 12622 Egypt
| | - Kwok Feng Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Gambang, 26300 Kuantan, Malaysia
| | - Alexander V. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova Str. 178/24, Rostov-on-Don, Russian Federation
| | - Gomaa A. M. Ali
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524 Egypt
| |
Collapse
|
2
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
3
|
Clauss ZS, Wardzala CL, Schlirf AE, Wright NS, Saini SS, Onoa B, Bustamante C, Kramer JR. Tunable, biodegradable grafting-from glycopolypeptide bottlebrush polymers. Nat Commun 2021; 12:6472. [PMID: 34753949 PMCID: PMC8578664 DOI: 10.1038/s41467-021-26808-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cellular glycocalyx and extracellular matrix are rich in glycoproteins and proteoglycans that play essential physical and biochemical roles in all life. Synthetic mimics of these natural bottlebrush polymers have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Using one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides, we report grafting-from glycopolypeptide brushes. The materials are chemically and conformationally tunable where backbone and sidechain lengths were precisely altered, grafting density modulated up to 100%, and glycan density and identity tuned by monomer feed ratios. The glycobrushes are composed entirely of sugars and amino acids, are non-toxic to cells, and are degradable by natural proteases. Inspired by native lipid-anchored proteoglycans, cholesterol-modified glycobrushes were displayed on the surface of live human cells. Our materials overcome long-standing challenges in glycobrush polymer synthesis and offer new opportunities to examine glycan presentation and multivalency from chemically defined scaffolds. Synthetic mimics of glycoproteins and proteoglycans have wide applications in biomedicine, yet preparation has been challenged by their high grafting and glycosylation densities. Here the authors show one-pot dual-catalysis polymerization of glycan-bearing α-amino acid N-carboxyanhydrides to form glycopolypeptide brushes.
Collapse
Affiliation(s)
- Zachary S Clauss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Casia L Wardzala
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Austin E Schlirf
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Nathaniel S Wright
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Simranpreet S Saini
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA
| | - Carlos Bustamante
- Howard Hughes Medical Institute University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.,Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, 94720, USA.,Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Jessica R Kramer
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84102, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, 84102, USA.
| |
Collapse
|
4
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Qin Q, Lang S, Huang X. Synthetic linear glycopolymers and their biological applications. J Carbohydr Chem 2021; 40:1-44. [PMID: 35308080 PMCID: PMC8932951 DOI: 10.1080/07328303.2021.1928156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
As typical affinities of carbohydrates with their receptors are modest, polymers of carbohydrates (glycopolymers) are exciting tools to probe the multifaceted biological activities of glycans. In this review, the linear glycopolymers and the multivalency effects are first introduced. This is followed by discussions of methods to synthesize these polymers. Subsequently, the interactions of glycopolymers with plant lectins and viral/bacterial carbohydrate binding proteins are discussed. In addition, applications of the glycopolymers in facilitating glycan microarray studies, mimicking cell surface glycans, modulation of the immune system, cryoprotection of protein, and electron-beam lithography are presented to stimulate further development of this fascinating technology.
Collapse
Affiliation(s)
- Qian Qin
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
| | - Shuyao Lang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan StateUniversity, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021; 21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Indexed: 01/09/2023]
Abstract
This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| |
Collapse
|
7
|
Monaco A, Beyer VP, Napier R, Becer CR. Multi-Arm Star-Shaped Glycopolymers with Precisely Controlled Core Size and Arm Length. Biomacromolecules 2020; 21:3736-3744. [PMID: 32786531 DOI: 10.1021/acs.biomac.0c00838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Star-shaped glycopolymers provide very high binding activities toward lectins. However, a straightforward synthesis method for the preparation of multi-arm glycopolymers in a one-pot approach has been challenging. Herein, we report a rapid synthesis of well-defined multi-arm glycopolymers via Cu(0)-mediated reversible deactivation radical polymerization in aqueous media. d-Mannose acrylamide has been homo- and copolymerized with NIPAM to provide linear arms and then core cross-linked with a bisacrylamide monomer. Thus, the arm length and core size of multi-arm glycopolymers were tuned. Moreover, the stability of multi-arm glycopolymers was investigated, and degradation reactions under acidic or basic conditions were observed. The binding activities of the obtained multi-arm glycopolymers with mannose-specific human lectins, DC-SIGN and MBL, were investigated via surface plasmon resonance spectroscopy. Finally, the encapsulation ability of multi-arm glycopolymers was examined using DHA and Saquinavir below and above the lower critical solution temperature (LCST) of P(NIPAM).
Collapse
Affiliation(s)
- Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
8
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|
9
|
Beyer VP, Monaco A, Napier R, Yilmaz G, Becer CR. Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules 2020; 21:2298-2308. [PMID: 32320219 DOI: 10.1021/acs.biomac.0c00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lectins are omnipresent carbohydrate binding proteins that are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool toward the understanding and modification of their functions in biological applications. Herein, we present the synthesis of glycopolymers with a brush architecture via a "grafting from" methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed for their thermal properties in aqueous solution and their binding toward the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications.
Collapse
Affiliation(s)
- Valentin P Beyer
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Polymer Chemistry Laboratory, School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom.,Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
10
|
Hoffmann M, Gau E, Braun S, Pich A, Elling L. Enzymatic Synthesis of 2-(β-Galactosyl)-ethyl Methacrylate by β-Galactosidase from Pyrococcus woesei and Application for Glycopolymer Synthesis and Lectin Studies. Biomacromolecules 2020; 21:974-987. [DOI: 10.1021/acs.biomac.9b01647] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marius Hoffmann
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße. 20, 52074 Aachen, Germany
| | - Elisabeth Gau
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Susanne Braun
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- DWI—Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße. 20, 52074 Aachen, Germany
| |
Collapse
|
11
|
Rosencrantz S, Tang JSJ, Schulte‐Osseili C, Böker A, Rosencrantz RR. Glycopolymers by RAFT Polymerization as Functional Surfaces for Galectin‐3. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sophia Rosencrantz
- Biofunctionalized Materials and (Glyco)Biotechnology Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
| | - Jo Sing Julia Tang
- Biofunctionalized Materials and (Glyco)Biotechnology Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
| | - Christine Schulte‐Osseili
- Biofunctionalized Materials and (Glyco)Biotechnology Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
| | - Alexander Böker
- Chair of Polymer Materials and Polymer Technologies Institute of Chemistry, University of Potsdam Karl‐Liebknecht‐Str. 24–25 14476 Potsdam Germany
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
| | - Ruben R. Rosencrantz
- Biofunctionalized Materials and (Glyco)Biotechnology Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam Germany
| |
Collapse
|
12
|
Feng L, Zhong M, Zhang S, Wang M, Sun ZY, Chen Q. Synthesis of water-soluble fluorescent polymeric glycoconjugate for the detection of cholera toxin. Des Monomers Polym 2019; 22:150-158. [PMID: 31496925 PMCID: PMC6719259 DOI: 10.1080/15685551.2019.1654695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Considering inherence optical properties of adjoint polyfluorenes and special functions of water-soluble conjugated glycopolymers, a triazole chain glycoconjugate via one-pot method were rapidly synthesized to prepare a lactate ligand polyfluorene with a clear fluorescent label by a nickel-catalyzed Yamamoto coupling polymerization. The water solubility and biocompatibility of the glycoconjugated polymer were ameliorated when the lactose group introduced as the side chain of the conjugated polymer. As a fluorescent multivalent system of glycoconjugates containing pyranogalactose groups, the interaction between pyranogalactose group and cholera toxin B subunit was studied by fluorescence spectrophotometric titration. PF-Lac has a broad application prospect in the check of cholera toxin and the study of glycoprotein interaction.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Bioengineering, Zunyi Medical University (Zhuhai Compus), Zhuhai, China
| | - Mingjun Zhong
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Shizhen Zhang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, China
| | - Min Wang
- Department of Bioengineering, Zunyi Medical University (Zhuhai Compus), Zhuhai, China
| | - Zhi-Yong Sun
- Department of Bioengineering, Zunyi Medical University (Zhuhai Compus), Zhuhai, China
| | - Qi Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
13
|
Schulte-Osseili C, Kleinert M, Keil N, Rosencrantz RR. Rapid Drop-Test for Lectin Binding with Glycopolymer-Coated Optical Ring Resonators. BIOSENSORS-BASEL 2019; 9:bios9010024. [PMID: 30759839 PMCID: PMC6469017 DOI: 10.3390/bios9010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 02/06/2019] [Indexed: 11/20/2022]
Abstract
We fabricated a simple sensor system for qualitative analysis of glycan-mediated interactions. Our main aim was to establish a ronbbust system that allowes drop-tests without complex fluidics. The test system should be usable in routine analytics in the future and bear sufficient sensitivity to detect binding events in the nanomolar range. For this, we employed optical ring resonators and coated them with high avidity glycopolymers based on N-acetylglucosamine (GlcNAc). These hydrophilic polymers are also very feasible in preventing unspecific protein adsorption. Drop-on binding studies with suitable lectins showed that glycopolymers were specifically recognized by a lectin with GlcNAc-specificity and prevented unspecific protein interactions very well. The system could be elaborated in the future for detection of glycan-mediated interactions in the biomedical field and is promising in means of multiplexed analysis and usage in routine analysis.
Collapse
Affiliation(s)
| | - Moritz Kleinert
- Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI, Einsteinufer 37, 10587 Berlin, Germany.
| | - Norbert Keil
- Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI, Einsteinufer 37, 10587 Berlin, Germany.
| | - Ruben R Rosencrantz
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam, Germany.
| |
Collapse
|
14
|
Badoux M, Billing M, Klok HA. Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00163h] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses protein-binding polymer brushes and the various strategies that can be used to immobilize proteins on these films.
Collapse
Affiliation(s)
- Michael Badoux
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| | - Mark Billing
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| |
Collapse
|
15
|
Lu M, Khine YY, Chen F, Cao C, Garvey CJ, Lu H, Stenzel MH. Sugar Concentration and Arrangement on the Surface of Glycopolymer Micelles Affect the Interaction with Cancer Cells. Biomacromolecules 2018; 20:273-284. [DOI: 10.1021/acs.biomac.8b01406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Mingxia Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Yee Yee Khine
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
- Australia Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Christopher J. Garvey
- Australia Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
16
|
Laaf D, Bojarová P, Elling L, Křen V. Galectin-Carbohydrate Interactions in Biomedicine and Biotechnology. Trends Biotechnol 2018; 37:402-415. [PMID: 30413271 DOI: 10.1016/j.tibtech.2018.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
Abstract
Cellular communication events are mediated by interactions between cell-surface sugars and lectins, which are carbohydrate-binding proteins. Galectins are β-galactosyl-binding lectins that bridge molecules by their sugar moieties, forming a signaling and adhesion network. Severe changes in glycosylation and galectin expression accompany major processes in oncogenesis, cardiovascular disorders, and other pathologies, making galectins attractive therapeutic targets. Here we discuss advanced strategies of chemo-enzymatic carbohydrate synthesis for creating lead glycomimetics and (neo-)glycoconjugates for galectin-1 and -3 targeting in biomedicine and biotechnology. We will describe the challenges and bottlenecks on the route into biomedical and biotechnological practice and present the first clinical candidates. The coming era will see an exciting translation of selective well-defined high-affinity galectin ligands from bench to bedside.
Collapse
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany; Equally contributing authors
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic; Equally contributing authors
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic.
| |
Collapse
|
17
|
Hadjicharalambous C, Flouraki C, Narain R, Chatzinikolaidou M, Vamvakaki M. Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:98. [PMID: 29946888 DOI: 10.1007/s10856-018-6112-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Controlling the cell behavior on biocompatible polymer surfaces is critical for the development of suitable medical implant coatings as well as in anti-adhesive applications. Synthetic glycopolymer brushes, based on sugar methacrylate monomers have been reported as robust surfaces to resist protein adsorption and cell adhesion. In this study, poly(D-gluconamidoethyl methacrylate) (PGAMA) brushes of various chain lengths were synthesized directly from initiator functionalized glass substrates using surface-initiated atom transfer radical polymerization. The glycopolymer film thicknesses were determined by ellipsometry, whereas the wettability and the morphology of the surfaces were characterized by static water contact angle measurements and atomic force microscopy, respectively. Stable, grafted films with thicknesses in the dry state between 4 and 20 nm and of low roughness (~1 nm) were obtained by varying the polymerization time. Cell experiments with MC3T3-E1 pre-osteoblasts cultured on the PGAMA brushes were performed to examine the effect of film thickness on the cell morphology, cytoskeleton organization and growth. The results revealed good cell spreading and proliferation on PGAMA layers of low film thickness, whereas cell adhesion was prevented on polymer films with thickness higher than ~10 nm, indicating their potential use in medical implants and anti-adhesive surfaces, respectively.
Collapse
Affiliation(s)
- Chrystalleni Hadjicharalambous
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Chara Flouraki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9, Alberta, Canada
| | - Maria Chatzinikolaidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 711 10, Crete, Greece.
- Department of Materials Science and Technology, University of Crete, Heraklion, 710 03, Crete, Greece.
| |
Collapse
|
18
|
O'Neil CL, Stine KJ, Demchenko AV. Immobilization of glycans on solid surfaces for application in glycomics. J Carbohydr Chem 2018; 37:225-249. [PMID: 30505067 PMCID: PMC6261488 DOI: 10.1080/07328303.2018.1462372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Carbohydrates are an important class of biomolecules which are involved in a multitude of cellular functions. In the field of glycomics, the structure and function of various carbohydrates, oligosaccharides, glycans and their conjugates are constantly under investigation. In the continuing quest to understand the roles of carbohydrates in their interactions with proteins, immunogens, and other cell-surface carbohydrates, scientists have developed methods for observing the effects of specific saccharide sequences on various cellular components. Carbohydrate immobilization has allowed researchers to study the impact of specific sequences, leading to a deeper understanding of many cellular processes. The goal of this review is to highlight the chemical reactions and interactions that have been used for glycan immobilization.
Collapse
Affiliation(s)
- Crystal L O'Neil
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, USA
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Igde S, Röblitz S, Müller A, Kolbe K, Boden S, Fessele C, Lindhorst TK, Weber M, Hartmann L. Linear Precision Glycomacromolecules with Varying Interligand Spacing and Linker Functionalities Binding to Concanavalin A and the Bacterial Lectin FimH. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Sinaida Igde
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Susanna Röblitz
- Department of Numerical Mathematics; Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
- Department of Mathematics and Computer Science; Freie Universität Berlin; Arnimallee 6 14195 Berlin Germany
| | - Anne Müller
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Katharina Kolbe
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Sophia Boden
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| | - Claudia Fessele
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Thisbe K. Lindhorst
- Otto Diels Institute of Organic Chemistry; Christiana Albertina University of Kiel; Otto-Hahn-Platz 3-4 24118 Kiel Germany
| | - Marcus Weber
- Department of Numerical Mathematics; Zuse Institute Berlin (ZIB); Takustr. 7 14195 Berlin Germany
- Department of Mathematics and Computer Science; Freie Universität Berlin; Arnimallee 6 14195 Berlin Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry; Heinrich-Heine-Universität; Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|
20
|
Chmielarz P, Krys P, Wang Z, Wang Y, Matyjaszewski K. Synthesis of Well‐Defined Polymer Brushes from Silicon Wafers
via
Surface‐Initiated
se
ATRP. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700106] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Paweł Chmielarz
- Department of Physical Chemistry Faculty of Chemistry Rzeszow University of Technology Al. Powstanńców Warszawy 6 35‐959 Rzeszow Poland
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Pawel Krys
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Zongyu Wang
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Yi Wang
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
21
|
Jans A, Rosencrantz RR, Mandić AD, Anwar N, Boesveld S, Trautwein C, Moeller M, Sellge G, Elling L, Kuehne AJC. Glycan-Functionalized Microgels for Scavenging and Specific Binding of Lectins. Biomacromolecules 2017; 18:1460-1465. [PMID: 28257575 DOI: 10.1021/acs.biomac.6b01754] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lectins are proteins with a well-defined carbohydrate recognition domain. Many microbial proteins such as bacterial toxins possess lectin or lectin-like binding domains to interact with cell membranes that are decorated with glycan recognition motifs. We report a straightforward way to prepare monodisperse and biocompatible polyethylene glycol microgels, which carry glycan motifs for specific binding to lectins. The sugar-functionalized colloids exhibit a wide mesh size and a highly accessible volume. The microgels are prepared via drop-based microfluidics combined with radical polymerization. GSII and ECL are used as model lectins that bind specifically to the corresponding carbohydrates, namely, GlcNAc and LacNAc. LacNAc microgels bind ECL with a high capacity and high affinity (Kd ≈ 0.5 to 1 μM), suggesting multivalent binding of the lectin to the LacNAc-decorated flexible microgel network. Glycan-functionalized microgels present a useful tool for lectin scavenging in biomedical applications.
Collapse
Affiliation(s)
- Alexander Jans
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| | - Ruben R Rosencrantz
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstr. 20, 52074 Aachen, Germany
| | - Ana D Mandić
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Naveed Anwar
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| | - Sarah Boesveld
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Martin Moeller
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital, RWTH Aachen University , Pauwelsstr. 30, 52074 Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University , Pauwelsstr. 20, 52074 Aachen, Germany
| | - Alexander J C Kuehne
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University , Forckenbeckstraße 50, 52076 Aachen, Germany
| |
Collapse
|
22
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 610] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Akiba U, Anzai JI. Recent Progress in Electrochemical Biosensors for Glycoproteins. SENSORS (BASEL, SWITZERLAND) 2016; 16:E2045. [PMID: 27916961 PMCID: PMC5191026 DOI: 10.3390/s16122045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.
Collapse
Affiliation(s)
- Uichi Akiba
- Graduate School of Engineering and Science, Akita University, 1-1 Tegatagaluenn-machi, Akita 010-8502, Japan.
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramakim, Sendai 980-8578, Japan.
| |
Collapse
|
24
|
Terada Y, Seto H, Hoshino Y, Murakami T, Shinohara S, Tamada K, Miura Y. SPR study for analysis of a water-soluble glycopolymer interface and molecular recognition properties. Polym J 2016. [DOI: 10.1038/pj.2016.99] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Lazar J, Rosencrantz RR, Elling L, Schnakenberg U. Simultaneous Electrochemical Impedance Spectroscopy and Localized Surface Plasmon Resonance in a Microfluidic Chip: New Insights into the Spatial Origin of the Signal. Anal Chem 2016; 88:9590-9596. [DOI: 10.1021/acs.analchem.6b02307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jaroslav Lazar
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen, Germany
| | - Ruben R. Rosencrantz
- Laboratory
for Biomaterials, Institute for Biotechnology and Helmholtz-Institute
for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse
20, 52074 Aachen, Germany
| | - Lothar Elling
- Laboratory
for Biomaterials, Institute for Biotechnology and Helmholtz-Institute
for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse
20, 52074 Aachen, Germany
| | - Uwe Schnakenberg
- Institute
of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen, Germany
| |
Collapse
|
26
|
Cousin JM, Cloninger MJ. The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. Int J Mol Sci 2016; 17:ijms17091566. [PMID: 27649167 PMCID: PMC5037834 DOI: 10.3390/ijms17091566] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/24/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This review discusses the role of galectin-1 in the tumor microenvironment. First, the structure and function of galectin-1 are discussed. Galectin-1, a member of the galectin family of lectins, is a functionally dimeric galactoside-binding protein. Although galectin-1 has both intracellular and extracellular functions, the defining carbohydrate-binding role occurs extracellularly. In this review, the extracellular roles of galectin-1 in cancer processes are discussed. In particular, the importance of multivalent interactions in galectin-1 mediated cellular processes is reviewed. Multivalent interactions involving galectin-1 in cellular adhesion, mobility and invasion, tumor-induced angiogenesis, and apoptosis are presented. Although the mechanisms of action of galectin-1 in these processes are still not well understood, the overexpression of galectin-1 in cancer progression indicates that the role of galectin-1 is significant. To conclude this review, synthetic frameworks that have been used to modulate galectin-1 processes are reviewed. Small molecule oligomers of carbohydrates, carbohydrate-functionalized pseudopolyrotaxanes, cyclodextrins, calixarenes, and glycodendrimers are presented. These synthetic multivalent systems serve as important tools for studying galectin-1 mediated cancer cellular functions.
Collapse
Affiliation(s)
- Jonathan M Cousin
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Mary J Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
27
|
Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance. Anal Bioanal Chem 2016; 408:5633-40. [DOI: 10.1007/s00216-016-9667-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
|
28
|
|
29
|
Lepoittevin B, Costa L, Pardoue S, Dragoé D, Mazerat S, Roger P. Hydrophilic PET surfaces by aminolysis and glycopolymer brushes chemistry. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28148] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bénédicte Lepoittevin
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Ludovic Costa
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Sylvain Pardoue
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Diana Dragoé
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Sandra Mazerat
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| | - Philippe Roger
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR 8182, Univ Paris Sud, CNRS, Université Paris-Saclay; Orsay 91405 France
| |
Collapse
|
30
|
Lange B, Šimonová A, Fischöder T, Pelantová H, Křen V, Elling L. Towards Keratan Sulfate - Chemoenzymatic Cascade Synthesis of SulfatedN-Acetyllactosamine (LacNAc) Glycan Oligomers. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Weaver LG, Singh Y, Burn PL, Blanchfield JT. The synthesis and ring-opening metathesis polymerization of glycomonomers. RSC Adv 2016. [DOI: 10.1039/c5ra25732h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis of a series of short poly(norbornene)s displaying pendant disaccharides is reported.
Collapse
Affiliation(s)
- Lucy G. Weaver
- The School of Chemistry & Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| | - Yogendra Singh
- The School of Chemistry & Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| | - Paul L. Burn
- Centre for Organic Photonics & Electronics
- University of Queensland
- St Lucia
- Australia
| | - Joanne T. Blanchfield
- The School of Chemistry & Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|
32
|
Park H, Walta S, Rosencrantz RR, Körner A, Schulte C, Elling L, Richtering W, Böker A. Micelles from self-assembled double-hydrophilic PHEMA-glycopolymer-diblock copolymers as multivalent scaffolds for lectin binding. Polym Chem 2016. [DOI: 10.1039/c5py00797f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a novel double-hydrophilic hydroxyethylmethacrylate (HEMA) based diblock glycopolymer which self-assembles into homogeneous spherical micellar structures in water.
Collapse
Affiliation(s)
- H. Park
- DWI – Leibniz Institut für Interaktive Materialien e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
- Aachen
- Germany
| | - S. Walta
- Institute of Physical Chemistry
- RWTH Aachen University
- JARA – Soft Matter Science
- D-52074 Aachen
- Germany
| | - R. R. Rosencrantz
- Laboratory for Biomaterials
- Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - A. Körner
- DWI – Leibniz Institut für Interaktive Materialien e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
- Aachen
- Germany
| | - C. Schulte
- Fraunhofer-Institut für Angewandte Polymerforschung
- Lehrstuhl für Polymermaterialien und Polymertechnologie
- Universität Potsdam
- 14476 Potsdam-Golm
- Germany
| | - L. Elling
- Laboratory for Biomaterials
- Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - W. Richtering
- Institute of Physical Chemistry
- RWTH Aachen University
- JARA – Soft Matter Science
- D-52074 Aachen
- Germany
| | - A. Böker
- DWI – Leibniz Institut für Interaktive Materialien e.V
- Lehrstuhl für Makromolekulare Materialien und Oberflächen
- Aachen
- Germany
| |
Collapse
|
33
|
Delbianco M, Bharate P, Varela-Aramburu S, Seeberger PH. Carbohydrates in Supramolecular Chemistry. Chem Rev 2015; 116:1693-752. [PMID: 26702928 DOI: 10.1021/acs.chemrev.5b00516] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Priya Bharate
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Silvia Varela-Aramburu
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
34
|
Xu LQ. Ruthenium(II)–terpyridine complexes-containing glyconanoparticles for one- and two-photon excited fluorescence imaging. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Henze M, Schmidtke S, Hoffmann N, Steffens H, Pietruszka J, Elling L. Combination of Glycosyltransferases and a Glycosynthase in Sequential and One-Pot Reactions for the Synthesis of Type 1 and Type 2N-Acetyllactosamine Oligomers. ChemCatChem 2015. [DOI: 10.1002/cctc.201500645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manja Henze
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Simon Schmidtke
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Natalie Hoffmann
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
| | - Hanna Steffens
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
- IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| |
Collapse
|
36
|
Lazar J, Park H, Rosencrantz RR, Böker A, Elling L, Schnakenberg U. Evaluating the Thickness of Multivalent Glycopolymer Brushes for Lectin Binding. Macromol Rapid Commun 2015; 36:1472-8. [DOI: 10.1002/marc.201500118] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| | - Hyunji Park
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI-Leibniz Institut für Interaktive Materialien e.V; Lehrstuhl für Makromolekulare Materialien und Oberflächen; Forckenbeckstr. 50 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1; RWTH Aachen University; Sommerfeldstr. 24 52074 Aachen Germany
| |
Collapse
|
37
|
Glycodendrimers and Modified ELISAs: Tools to Elucidate Multivalent Interactions of Galectins 1 and 3. Molecules 2015; 20:7059-96. [PMID: 25903363 PMCID: PMC4513649 DOI: 10.3390/molecules20047059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/29/2015] [Accepted: 04/01/2015] [Indexed: 01/27/2023] Open
Abstract
Multivalent protein-carbohydrate interactions that are mediated by sugar-binding proteins, i.e., lectins, have been implicated in a myriad of intercellular recognition processes associated with tumor progression such as galectin-mediated cancer cellular migration/metastatic processes. Here, using a modified ELISA, we show that glycodendrimers bearing mixtures of galactosides, lactosides, and N-acetylgalactosaminosides, galectin-3 ligands, multivalently affect galectin-3 functions. We further demonstrate that lactose functionalized glycodendrimers multivalently bind a different member of the galectin family, i.e., galectin-1. In a modified ELISA, galectin-3 recruitment by glycodendrimers was shown to directly depend on the ratio of low to high affinity ligands on the dendrimers, with lactose-functionalized dendrimers having the highest activity and also binding well to galectin-1. The results depicted here indicate that synthetic multivalent systems and upfront assay formats will improve the understanding of the multivalent function of galectins during multivalent protein carbohydrate recognition/interaction.
Collapse
|