1
|
Wang H, Tan S, Su Z, Li M, Hao X, Peng F. Perforin-Mimicking Molecular Drillings Enable Macroporous Hollow Lignin Spheres for Performance-Configurable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311073. [PMID: 38199249 DOI: 10.1002/adma.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Despite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin-mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance-configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin-induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.
Collapse
Affiliation(s)
- Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Shujun Tan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing, 100102, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
2
|
Dorbic K, Lattuada M. Synthesis of dimpled polymer particles and polymer particles with protrusions - Past, present, and future. Adv Colloid Interface Sci 2023; 320:102998. [PMID: 37729785 DOI: 10.1016/j.cis.2023.102998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Since the development of emulsion polymerization techniques, polymer particles have become the epitome of standard colloids due to the exceptional control over size, size distribution, and composition the synthesis methods allow reaching. The exploration of different variations of the synthesis methods has led to the discovery of more advanced techniques, enabling control over their composition and shape. Many early investigations focused on forming particles with protrusions (with one protrusion, called dumbbell particles) and particles with concavities, also called dimpled particles. This paper reviews the literature covering the synthesis, functionalization, and applications of both types of particles. The focus has been on the rationalization of the various approaches used to prepare such particles and on the discussion of the mechanisms of formation not just from the experimental viewpoint but also from the standpoint of thermodynamics. The primary motivation to combine in a single review the preparation of both types of particles has been the observation of similarities among some of the methods developed to prepare dimpled particles, which sometimes include the formation of particles with protrusions and vice versa. The most common applications of these particles have been discussed as well. By looking at the different approaches developed in the literature under one general perspective, we hope to stimulate a more ample use of these particles and promote the development of even more effective synthetic protocols.
Collapse
Affiliation(s)
- Kata Dorbic
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Marco Lattuada
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
4
|
Liu J, Tan Z, Qu X, Liang F, Yang Z. Single-Hole Janus Hollow Sphere. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11406-11413. [PMID: 36084177 DOI: 10.1021/acs.langmuir.2c01672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cross-linked epoxy resin (EP) single-hole Janus hollow spheres are prepared by cross-linking induced phase separation within an emulsion droplet and selective modification. The droplet is composed of an EP oligomer, toluene, and hexadecane. 2-Ethyl-4-methylimidazole is used as the cross-linker added to the aqueous phase. During the cross-linking, hexadecane forms an eccentric core in the cross-linked EP sphere. A single hole forms across the shell after dissolving the solvents, and a single-hole hollow sphere is achieved. The hole and cavity size are controlled by adjusting the solvent content and cross-linker concentration. Furthermore, frozen wax is used as the core material instead of hexadecane to effectively protect the sphere's interior surface. Selective modification of the exterior and interior surfaces is thus permitted. As an example, a responsive single-hole Janus hollow sphere is prepared by the favorable growth of a silica-polyoxyethylene composite layer onto the exterior surface and a selective grafting of poly(2-diethylaminoethyl methacrylate) (PDEAEMA) by atom-transfer radical polymerization (ATRP) onto the interior. The Janus sphere is water-dispersible and controllably captures and releases oil from the aqueous environment as triggered by the pH value.
Collapse
Affiliation(s)
- Jiaxian Liu
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhaoqi Tan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaozhong Qu
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuxin Liang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
5
|
pH-responsive pitted polymer particles with surface morphologies from cup shaped to multicavities. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04884-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Hamilton HSC, Bradley LC. Probing the morphology evolution of chemically anisotropic colloids prepared by homopolymerization- and copolymerization-induced phase separation. Polym Chem 2020. [DOI: 10.1039/c9py01166h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemically anisotropic colloids prepared by polymerization-induced phase separation during seeded emulsion polymerization with non-crosslinked seeds reveals tunability in both surface and interior properties based on the morphology evolution.
Collapse
Affiliation(s)
- Heather S. C. Hamilton
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| | - Laura C. Bradley
- Department of Polymer Science and Engineering
- University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
7
|
Wang J, Pan M, Yuan J, Wang Y, Liu G, Zhu L. Revisiting the Classical Emulsion Polymerization: An Intriguing Occurrence of Monodispersed Bowl-Shaped Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yajiao Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
8
|
Wang J, Yang Z, Xu J, Ahmad M, Zhang H, Zhang A, Zhang Q, Kou X, Zhang B. Surface Microstructure Regulation of Porous Polymer Microspheres by Volume Contraction of Phase Separation Process in Traditional Suspension Polymerization System. Macromol Rapid Commun 2019; 40:e1800768. [DOI: 10.1002/marc.201800768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/23/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Jiqi Wang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Zuoting Yang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Jia Xu
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Mudasir Ahmad
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
| | - Hepeng Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary ConditionMinistry of EducationNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Aibo Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary ConditionMinistry of EducationNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qiuyu Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary ConditionMinistry of EducationNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Xiaokang Kou
- Sunresin New Materials Co. Ltd. Xi'an 710072 P. R. China
| | - Baoliang Zhang
- School of Applied and Natural SciencesNorthwestern Polytechnical University Xi'an 710129 P. R. China
- Sunresin New Materials Co. Ltd. Xi'an 710072 P. R. China
| |
Collapse
|
9
|
Fan JB, Liu H, Song Y, Luo Z, Lu Z, Wang S. Janus Particles Synthesis by Emulsion Interfacial Polymerization: Polystyrene as Seed or Beyond? Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02304] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun-Bing Fan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hong Liu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Luo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Morphology evolution of poly(glycidyl methacrylate) colloids in the 1,1-diphenylethene controlled soap-free emulsion polymerization. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Tian L, Li X, Wan D, Ali Z, Zhang Q. Large-scale fabrication of polymer ellipsoids with controllable patches via the viscosity-induced deformation of spherical particles. Polym Chem 2017. [DOI: 10.1039/c7py00475c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and controllable strategy to synthesize polymer ellipsoids via the viscosity-induced deformation of spherical particles is proposed.
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xue Li
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Dewei Wan
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Zafar Ali
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| |
Collapse
|
12
|
Tian L, Li X, Liu J, Wan D, Ali Z, Zhang Q. Fast swelling strategy for flower-like micro-sized colloidal surfactants with controllable patches by regulating the Tg of seed particles. Polym Chem 2017. [DOI: 10.1039/c7py00966f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are reporting an efficient fast swelling procedure by regulating the glass transition temperature Tg of poly(glycidyl methacrylate) (PGMA) seed particles via copolymerization with n-butyl acrylate (nBA).
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xue Li
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Jin Liu
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Dewei Wan
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Zafar Ali
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Natural and Applied Sciences
- Northwestern Polytechnical University
- Xi'an 710072
- China
| |
Collapse
|
13
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
14
|
Tian L, Li X, Zhao P, Ali Z, Zhang Q. Fabrication of Liquid Protrusions on Non-Cross-Linked Colloidal Particles for Shape-Controlled Patchy Microparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lei Tian
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xue Li
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Panpan Zhao
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zafar Ali
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuyu Zhang
- Department of Applied
Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
- The Key Laboratory of Space Applied
Physics and Chemistry, Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
15
|
Tian L, Zhao P, Li X, Ali Z, Li X, Zhang B, Zhang H, Zhang Q. Design of Raspberry-Shaped Microcarriers with Adjustable Protrusions and Functional Groups for the Improvement of Lipase Immobilization and Biocatalysis: Environmentally Friendly Esterification of Oleic Acid for Biodiesel. ChemCatChem 2016. [DOI: 10.1002/cctc.201600413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Panpan Zhao
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Xue Li
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Zafar Ali
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Xiangjie Li
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Baoliang Zhang
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Hepeng Zhang
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| | - Qiuyu Zhang
- Department of Applied Chemistry, School of Science; Northwestern Polytechnical University; Xi'an 710072 P. R. China
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education; Northwestern Polytechnical University; Xi'an 710072 P. R. China
| |
Collapse
|
16
|
Wang L, Pan M, Song S, Zhu L, Yuan J, Liu G. Intriguing Morphology Evolution from Noncrosslinked Poly(tert-butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7829-40. [PMID: 27389855 DOI: 10.1021/acs.langmuir.6b01179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Shaofeng Song
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106-7202, United States
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| | - Gang Liu
- Institute of Polymer Science and Engineering, Hebei University of Technology , Tianjin 300130, P. R. China
| |
Collapse
|
17
|
Tian L, Li X, Zhao P, Ali Z, Zhang Q. Impressed pressure-facilitated seeded emulsion polymerization: design of fast swelling strategies for massive fabrication of patchy microparticles. Polym Chem 2016. [DOI: 10.1039/c6py01778a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
High-pressure and ultrasound swelling polymerization promote the fast and large-scale fabrication of patchy particles for potential applications.
Collapse
Affiliation(s)
- Lei Tian
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xue Li
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Panpan Zhao
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Zafar Ali
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Qiuyu Zhang
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072
- China
| |
Collapse
|